Skip to main content
Log in

Voltammetric immunoassay for α-fetoprotein by using a gold nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An immunosensor is described for the voltammetric determination of α-fetoprotein. It is making use of an AuNP-dendrimer conjugate and an ionic liquid. A gold electrode was first modified with chitosan. Then, the AuNP-dendrimer conjugate was covalently immobilized on the electrode. Following this, an ionic liquid was placed on the electrode via formation of a covalent bond between the amino groups of PAMAM and the aldehyde groups of an ionic liquid containing ferrocene. Thus, the redox probe ferrocene becomes immobilized on the electrode surface. PAMAM increases the amount of ferrocene immobilized on the electrode due to its globular shape and rich amino groups. The use of AuNPs improves the conductivity of the electrode. The modified electrode was applied to the determination of α-fetoprotein in human serum and has a linear response that covers the 0.05 to 30 ng mL−1 α-fetoprotein concentration range, with a detection limit of 0.02 ng mL−1. This assay is stable, selective and reproducible. It is perceived to provide a powerful tool for the early detection of cancer markers.

Schematic of a voltammetric immunoassay for α-fetoprotein based on a gold nanoparticle/dendrimer conjugate and ionic liquids anchored with both aldehyde and ferrocene. Chit: chitosan; GA: glutaraldehyde; PAMAM: G4 polyamidoaminic dendrimers; AuNP: Au nanoparticle; Fc: ferrocene; IL: ionic liquid. PB: phosphate buffer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiong C, Wang H, Yuan Y, Chai Y, Yuan R (2015) A novel solid-state Ru(bpy) 3 2+ electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta 131:192–197

    Article  CAS  PubMed  Google Scholar 

  2. Akter R, Jeong B, Lee YM, Choi JS, Rahman M (2017) Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosens Bioelectron 91:637–643

    Article  CAS  PubMed  Google Scholar 

  3. Tsukruk VV, Rinderspacher F, Bliznyuk VN (1997) Self-assembled multilayer films from dendrimers. Langmuir 13:2171–2176

    Article  CAS  Google Scholar 

  4. Kim DM, Rahman M, Do MH, Ban C, Shim YB (2010) An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens Bioelectron 25:1781–1788

    Article  CAS  PubMed  Google Scholar 

  5. Giannetto M, Mori L, Mori G, Careri M, Mangia A (2011) New amperometric immunosensor with response enhanced by PAMAM-dendrimers linked via self- assembled monolayers for determination of alpha-fetoprotein in human serum. Sensors Actuators B Chem 159:185–192

    Article  CAS  Google Scholar 

  6. Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141:1980–1986

    Article  CAS  PubMed  Google Scholar 

  7. Gao Q, Han J, Ma Z (2013) Polyamidoamine dendrimers-capped carbon dots/au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 49:323–328

    Article  CAS  PubMed  Google Scholar 

  8. Kavosi B, Salimi A, Hallaj R, Amani K (2014) A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens Bioelectron 52:20–28

    Article  CAS  PubMed  Google Scholar 

  9. Erdem A, Congur G, Mese F (2015) PAMAM dendrimer functionalized magnetic particles developed for voltammetric DNA analysis. J Electroanal Chem 741:51–55

    Article  CAS  Google Scholar 

  10. Jiang W, Wu L, Duan J, Yin H, Ai S (2018) Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers. Biosens Bioelectron 99:660–666

    Article  CAS  PubMed  Google Scholar 

  11. Jiang X, Wang H, Yuan R, Chai Y (2015) Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron 63:33–38

    Article  CAS  PubMed  Google Scholar 

  12. Kavosi B, Hallaj R, Teymourian H, Salimi A (2014) Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine–viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 59(2014):389–396

    Article  CAS  PubMed  Google Scholar 

  13. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids-advantages beyond green technology. Curr Opin Biotechnol 14:432–437

    Article  CAS  PubMed  Google Scholar 

  14. Wei Y, Li X, Sun X, Ma H, Zhang Y, Wei Q (2017) Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron 94:141–147

    Article  CAS  PubMed  Google Scholar 

  15. Dong S, Tong M, Zhang D, Huang T (2017) The strategy of nitrite and immunoassay human IgG biosensors based on ZnO@ZIF-8 and ionic liquid composite film. Sensors Actuators B Chem 251:650–657

    Article  CAS  Google Scholar 

  16. Fei J, Dou W, Zhao G (2015) A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182:2267–2275

    Article  CAS  Google Scholar 

  17. Shen G, Zhang X, Shen Y, Zhang S, Fang L (2015) One-step immobilization of antibodies for α-1-fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal Biochem 471:38–43

    Article  CAS  PubMed  Google Scholar 

  18. Sung D, Yang S (2014) Facile method for constructing an effective electron transfer mediating layer using ferrocene-containing multifunctional redox copolymer. Electrochim Acta 133:40–48

    Article  CAS  Google Scholar 

  19. Liang R, Fan L, Huang D, Qiu J (2011) A label-free amperometric immunosensor based on redox-active ferrocene-branched chitosan/multiwalled carbon nanotubes conductive composite and gold nanoparticles. Electroanal 23:719–727

    Article  CAS  Google Scholar 

  20. Wei Z, Sun X, Li Z, Fang Y, Ren G, Huang Y, Liu J (2011) Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite. Microchim Acta 172:365–371

    Article  CAS  Google Scholar 

  21. Qiu JD, Wang R, Liang RP, Xia XH (2009) Electrochemically deposited nanocomposite film of CS-fc/au NPs/GOx for glucose biosensor application. Biosens Bioelectron 24:2920–2925

    Article  CAS  PubMed  Google Scholar 

  22. Senel M, Nergiz C, Cevik E (2013) Novel reagentless glucose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sensors Actuators B Chem 176:299–306

    Article  CAS  Google Scholar 

  23. Feng T, Qiao X, Wang H, Sun Z, Hong C (2016) A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosens Bioelectron 79:48–54

    Article  CAS  PubMed  Google Scholar 

  24. Stobiecka M, Hepel M (2011) Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles. Biosens Bioelectron 26:3524–3530

    Article  CAS  PubMed  Google Scholar 

  25. Niu Y, Yang T, Ma S, Peng F, Yi M, Wan M, Mao C, Shen J (2017) Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein. Biosens Bioelectron 92:1–7

    Article  CAS  PubMed  Google Scholar 

  26. Li N, Ma H, Cao W, Wu D, Yan T, Du B, Wei Q (2015) Highly sensitive electrochemical immunosensor for the detection of alpha fetoprotein based on PdNi nanoparticles and N-doped graphene nanoribbons. Biosens Bioelectron 74:786–791

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Huang H, Wang N, Li H, Shen D, Ma H (2017) Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Microchim Acta 184(10):4037–4045

    Article  CAS  Google Scholar 

  28. Jia H, Yang T, Zuo Y, Wang W, Xu J, Lu L, Li P (2017) Immunosensor for a-fetoprotein based on a glassy carbon electrode modified with electrochemically deposited N-doped graphene, gold nanoparticles and chitosan. Microchim Acta 184(10):3747–3753

    Article  CAS  Google Scholar 

  29. Shen YM, Shen GY, Zhang YY (2018) A versatile matrix of ionic liquid functionalized with aldehyde and ferrocene for label-free electrochemical immunosensors. Anal methods, in press https://doi.org/10.1039/c8ay00108a

  30. Shen G, Xu H, Gurung AS, Yang Y, Liu G (2013) Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer. Anal Sci 29:799–804

    Article  CAS  PubMed  Google Scholar 

  31. Xu T, Chi B, Wu F, Ma S, Zhan S, Yi M, Xu H, Mao C (2017) A sensitive label-free immunosensor for detection α-fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens Bioelectron 95:87–93

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Y, Li S, Xue Y, Liang T, Cui L, Li Q, Zhou S, Huang Y, Li G, Zhao Y (2017) A Fe3O4@au-based pseudo-homogeneous electrochemical immunosensor for AFP measurement using AFP antibody-GNPs-HRP as detection probe. Anal Biochem 534:56–63

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Li X, Mao K, Li Y, Du B, Zhang Y, Wei Q (2014) Electrochemical immunosensor for α-fetoprotein detection using ferroferric oxide and horseradish peroxidase as signal amplification labels. Anal Biochem 465:121–126

    Article  CAS  PubMed  Google Scholar 

  34. Qi T, Liao J, Li Y, Peng J, Li W, Chu B, Li H, Wei Y, Qian Z (2014) Label-free α-fetoprotein immunosensor established by the facile synthesis of a palladium–graphene nanocomposite. Biosens Bioelectron 61:245–250

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Gan X (2009) Antibody-functionalized magnetic nanoparticles for electrochemical immunoassay of α-1-fetoprotein in human serum. Microchim Acta 164:231–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from Hunan Provincial Natural Science Foundation of China (2016JJ6105) and Foundation of Hunan University of Arts and Science (17ZD03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyu Shen or Youyu Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Shen, G. & Zhang, Y. Voltammetric immunoassay for α-fetoprotein by using a gold nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid. Microchim Acta 185, 346 (2018). https://doi.org/10.1007/s00604-018-2886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2886-3

Keywords

Navigation