Skip to main content
Log in

Voltammetric immunoassay for the carcinoembryonic antigen by using a glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with tannic acid and grafted with poly(ethylene glycol)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric immunoassay for the carcinoembryonic antigen (CEA). A GCE was modified by electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tannic acid (TA). Subsequently, four-armed poly(ethylene glycol) (PEG) was assembled onto the modified surface through hydrogen bonding. The fabrication steps were characterized by scanning electron microscopy, energy dispersive spectroscopy, fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy and differential pulse voltammetry. The PEG/TA-PEDOT surface is shown be super-hydrophilic and to possess anti-fouling capability. Antibody against CEA was then covalently immobilized on the electrode. By using hexacyanoferrate as an electrochemical probe and at a working potential of 0.18 V vs SCE, the amperometric response is linear in the 10 ag·mL−1 to 1.0 ng·mL−1 CEA concentration range, and the detection limit is as low as 4.8 ag·mL−1 (at an S/N ratio of 3). The assay was applied to the quantification of CEA in 1:10 diluted human serum samples. Recoveries ranged from 103.7 to 108.7%, and relative standard deviations from 2.9 to 4.8%.

Schematic of an electrochemical immunosensor for the carcinoembryonic antigen (CEA). It is based on the use of tannic acid (TA) and poly(ethylene glycol) (PEG), both deposited on a glassy carbon electrode (GCE), and using hexacyanoferrate as the electrochemical probe. The sensor has a wide linear range and a 4.8 ag·mL−1 detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan L, Zhao J, Huang Y, Zhao S, Liu YM (2015) Aptamer-based microchip electrophoresis assays for amplification detection of carcinoembryonic antigen. Clin Chim Acta 450:304–309

    Article  CAS  Google Scholar 

  2. Gao J, Guo Z, Su F, Gao L, Pang X, Cao W, Du B, Wei Q (2015) Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of beta-cyclodextrin functionalized graphene and cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens Bioelectron 63:465–471

    Article  CAS  Google Scholar 

  3. Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41:2641–2655

    Article  CAS  Google Scholar 

  4. Hasanzadeh M, Shadjou N, Lin Y, de la Guardia M (2017) Nanomaterials for use in immunosensing of carcinoembryonic antigen (CEA): recent advances. TrAC Trends Anal Chem 86:185–205

    Article  CAS  Google Scholar 

  5. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414

    Article  CAS  Google Scholar 

  6. Sahiner N, Sagbas S, Aktas N (2015) Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Mater Sci Eng Proc Conf 49:824–834

    Article  CAS  Google Scholar 

  7. Lin J, Yan F, Ju H (2004) Noncompetitive enzyme immunoassay for carcinoembryonic antigen by flow injection chemiluminescence. Clin Chim Acta 341:109–115

    Article  CAS  Google Scholar 

  8. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3:243–252

    Article  CAS  Google Scholar 

  9. Anderson NL, Anderson NG (2002) The human plasma proteome history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  Google Scholar 

  10. Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, Elton E, Arnoletti JP, Christein JD, Vickers SM, Langmead CJ, Landsittle DP, Whitcomb DC, Grizzle WE, Lokshin AE (2011) Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res 17:805–816

    Article  CAS  Google Scholar 

  11. Deng L, Mrksich M, Whitesides GM (1996) Self-assembled monolayers of alkanethiolates presenting tri (propylene sulfoxide) groups resist the adsorption of protein. J Am Chem Soc 118:5136–5137

    Article  CAS  Google Scholar 

  12. Holmlin RE, Chen X, Chapman RG, Takayama ST, Whiteside GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850

    Article  CAS  Google Scholar 

  13. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 1718:5605–5620

    Article  Google Scholar 

  14. Nowinski AK, Sun F, White AD, Keefe AJ, Jiang S (2012) Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc 134:6000–6005

    Article  CAS  Google Scholar 

  15. Luo X, Xu M, Freeman C, James T, Davis JJ (2013) Ultrasensitive label free electrical detection of insulin in neat blood serum. Anal Chem 85:4129–4134

    Article  CAS  Google Scholar 

  16. Garapaty A, Champion JA (2015) Non-covalent phosphorylcholine coating reduces protein adsorption and phagocytic uptake of microparticles. Chem Commun (Cambridge, U. K.) 51:13814–13817

    Article  CAS  Google Scholar 

  17. Fan X, Su Y, Zhao X, Li Y, Zhang R, Ma T, Liu Y, Jiang Z (2016) Manipulating the segregation behavior of poly(ethylene glycol) by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J Membr Sci 499:56–64

    Article  CAS  Google Scholar 

  18. Pop-Georgievski O, Verreault D, Diesner MO, Proks V, Heissler S, Rypácek F, Koelsch P (2012) Non-fouling poly(ethylene oxide) layers end-tethered to Polydopamine. Langmuir 40:14273–14283

    Article  Google Scholar 

  19. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979

    Article  CAS  Google Scholar 

  20. Cho EC, Chang-Jian CW, Ho BC, Yu CC, Hsiao YS, Lee KC, Huang JH (2017) The effect of wetting property on electrochromic properties offunctionalize poly(3,4-ethylenedioxythiophene) films. Dyes Pigments 145:95–102

    Article  CAS  Google Scholar 

  21. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  CAS  Google Scholar 

  22. Yang Y, Liu Q, Liu Y, Cui J, Liu H, Wang P, Li Y, Chen L, Zhao Z, Dong Y (2017) A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens Bioelectron 90:31–38

    Article  CAS  Google Scholar 

  23. Miao L, Jiao L, Zhang J, Li H (2017) Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim Acta 184:169–175

    Article  CAS  Google Scholar 

  24. Yang T, Gao Y, Liu Z, Xu J, Lu L, Yu Y (2017) Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sensors Actuators B Chem 239:76–84

    Article  CAS  Google Scholar 

  25. Li X, Yu M, Chen Z, Lin X, Wu Q (2017) A sensor for detection of carcinoembryonic antigen based on the polyaniline-au nanoparticles and gap-based interdigitated electrode. Sensors Actuators B Chem 239:874–882

    Article  CAS  Google Scholar 

  26. Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X (2017) Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosens Bioelectron 89:312–318

    Article  CAS  Google Scholar 

  27. He B (2017) Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184:229–235

    Article  CAS  Google Scholar 

  28. Sun X, Hui N, Luo X (2017) Reagentless and label-free voltammetric immunosensor for carcinoembryonic antigen based on polyaniline nanowires grown on porous conducting polymer composite. Microchim Acta 184:889–896

    Article  CAS  Google Scholar 

  29. Liu Q, Liu XP, Wei YP, Mao CJ, Niu HL, Song JM, Jin BK, Zhang SY (2017) Electrochemiluminescence immunoassay for the carcinoembryonic antigen using CdSe: Eu nanocrystals. Microchim Acta 184:1353–1360

    Article  CAS  Google Scholar 

  30. Zhao D, Wang Y, Nie G (2016) Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly (indole-6-carboxylic acid). Microchim Acta 183:2925–2932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Science Foundation of China (U1303283), National High Technology Research and Development Program of China (2015AA034602), China Postdoctoral Science Foundation (2015 M582738), The science and technology project and achievement transformation plan of modern agricultural of Xinjiang Corps (2016 AC010), The National Science and Technology Major Project (2017YFD0500304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangfu Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lv, S., Gao, Z. et al. Voltammetric immunoassay for the carcinoembryonic antigen by using a glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with tannic acid and grafted with poly(ethylene glycol). Microchim Acta 184, 4705–4712 (2017). https://doi.org/10.1007/s00604-017-2502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2502-y

Keywords

Navigation