Skip to main content

Advertisement

Log in

Ultrasensitive amperometric determination of PSA based on a signal amplification strategy using nanoflowers composed of single-strand DNA modified fullerene and Methylene Blue, and an improved surface-initiated enzymatic polymerization

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a signal amplification strategy for highly sensitive detection of the prostate-specific antigen (PSA). This is accomplished by a combination of two methods, viz. (a) improved surface-initiated enzymatic polymerization (SIEP), and (b) the use of nanoflowers prepared from C60 fullerene and Methylene Blue (C60/MB) modified with a long single-strand DNA. C60/MB acts as a novel electrochemical indicator. The C60/MB nanoflowers improve the load of MB and promote the electron transfer. The integration of the SIEP technique and the C60/MB nanomaterial also results in improved loading of MB on the nucleic acid. Ultimately, dual cascade signal amplification is accomplished. The biosensor was constructed as follows: (a) Gold nanospheres were modified with antibody 2 (Ab2) and a thiolated oligonucleotide (referred to as S0). (2) S0 is then extended by the SIEP reaction. (3) The redox indicator C60/MB is then connected to the extended guanine-rich ssDNA which then yields the amperometric signal. (4) A sandwich immunoassay is performed by capturing the nanoprobe oy type Ab2-Au-S0 on the gold electrode modified with multi-walled carbon nanotubes (MWCNTs) and protein A. Current is measured by using differential pulse voltammetry (DPV). The synergic effect of the biofunctional nanomaterial and the signal amplification strategy greatly improves the performance of this immunoassay. Under optimized conditions and at a working voltage of typically −0.18 V (vs Ag/AgCl), the assay has a linear range that extends from 15 pg·mL−1 to 8 ng·mL−1 of PSA. The detection limit is as low as 1.7 pg·mL−1 (at an S/N ratio of 3). In our perception, this dual amplification scheme has a wide scope in that it may become applicable to numerous other immunoassays.

C60/Methylene blue nanoflowers, a novel electrochemical indicator, connect with the long single-stranded DNA (ssDNA) extended by the improved surface-initiated enzymatic polymerization method. This amplification strategy is utilized to construct a sandwich prostate-specific antigen (PSA) immunosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pezaro C, Woo HH, Davis ID (2014) Prostate cancer: measuring PSA. Intern Med J 44:433–440. https://doi.org/10.1111/imj.12407

    Article  CAS  Google Scholar 

  2. Jazayeri MH, Amani H, Pourfatollah AA et al (2016) Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther 23:365–369. https://doi.org/10.1038/cgt.2016.42

    Article  CAS  Google Scholar 

  3. Black MH, Giai M, Ponzone R et al (2000) Serum total and free prostate-specific antigen for breast cancer diagnosis in women. Clin Cancer Res 6:467–473

    CAS  Google Scholar 

  4. Wang Q, Lin X, Liu Y et al (2015) A scalable framework for mobile video broadcast using MCTF and 2D–DWT. Int. Symp. Wirel. Pers. Multimed. Commun. WPMC. IEEE, In, pp 118–123

    Google Scholar 

  5. Zhang J, Wang S, Gao N et al (2015) Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:YB, Er upconversion nanorods. Biosens Bioelectron 72:282–287. https://doi.org/10.1016/j.bios.2015.05.024

    Article  CAS  Google Scholar 

  6. Spain E, Gilgunn S, Sharma S et al (2016) Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens Bioelectron 77:759–766. https://doi.org/10.1016/j.bios.2015.10.058

    Article  CAS  Google Scholar 

  7. Song C, Xie G, Wang L et al (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74. https://doi.org/10.1016/j.bios.2014.02.031

    Article  CAS  Google Scholar 

  8. Yang J, Shen H, Zhang X et al (2016) A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 77:1119–1125. https://doi.org/10.1016/j.bios.2015.11.009

    Article  CAS  Google Scholar 

  9. Erdem A, Kerman K, Meric B, Ozsoz M (2001) Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis 13:219–223.

  10. Yang W, Ozsoz M, Hibbert DB, Gooding JJ (2002) Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis 14:1299–1302. https://doi.org/10.1016/S1388-2481(02)00428-9

    Article  CAS  Google Scholar 

  11. Tjong V, Yu H, Hucknall A et al (2011) Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization. Anal Chem 83:5153–5159. https://doi.org/10.1021/ac200946t

    Article  CAS  Google Scholar 

  12. Wang P, Wan Y, Deng S et al (2016) Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. Biosens Bioelectron 86:536–541. https://doi.org/10.1016/j.bios.2016.07.025

    Article  CAS  Google Scholar 

  13. Lawrence JR, Waiser MJ, Swerhone GDW et al (2016) Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environ Sci Pollut Res 23:10090–10102. https://doi.org/10.1007/s11356-016-6244-x

    Article  CAS  Google Scholar 

  14. Roushani M, Bakyas K, Zare Dizajdizi B (2016) Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode. Mater Sci Eng C 64:54–60. https://doi.org/10.1016/j.msec.2016.03.078

    Article  CAS  Google Scholar 

  15. Buchelnikov AS, Kostyukov VV, Yevstigneev MP, Prylutskyy YI (2013) Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60. Russ J Phys Chem A 87:662–667. https://doi.org/10.1134/S0036024413040067

    Article  CAS  Google Scholar 

  16. Evstigneev MP, Buchelnikov AS, Voronin DP et al (2013) Complexation of C60 fullerene with aromatic drugs. Chem Phys Chem 14:568–578. https://doi.org/10.1002/cphc.201200938

    Article  CAS  Google Scholar 

  17. Tolkachov M, Sokolova V, Loza K et al (2016) Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Materwiss Werksttech 47:216–221. https://doi.org/10.1002/mawe.201600486

    Article  CAS  Google Scholar 

  18. Panchuk RR, Prylutska SV, Chumak VV et al (2015) Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol 11:1139–1152. https://doi.org/10.1166/jbn.2015.2058

    Article  CAS  Google Scholar 

  19. Prylutskyy Y, Bychko A, Sokolova V et al (2016) Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Mater Sci Eng C 59:398–403. https://doi.org/10.1016/j.msec.2015.10.049

    Article  CAS  Google Scholar 

  20. Wang H, Bai L, Chai Y, Yuan R (2014) Synthesis of multi-fullerenes encapsulated palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of streptococcus suis serotype 2. Small 10:1857–1865. https://doi.org/10.1002/smll.201303594

    Article  CAS  Google Scholar 

  21. Han J, Zhuo Y, Chai YQ et al (2015) New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection. Anal Chem 87:1669–1675. https://doi.org/10.1021/ac503406p

    Article  CAS  Google Scholar 

  22. Tsai W-C, Pai P-JR (2009) Surface plasmon resonance-based immunosensor with oriented immobilized antibody fragments on a mixed self-assembled monolayer for the determination of staphylococcal enterotoxin B. Microchim Acta 166:115–122. https://doi.org/10.1007/s00604-009-0171-1

    Article  CAS  Google Scholar 

  23. Lin D, Mei C, Liu A et al (2015) Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition. Biosens Bioelectron 66:177–183. https://doi.org/10.1016/j.bios.2014.10.074

    Article  CAS  Google Scholar 

  24. Zhao M, Zhuo Y, Chai YQ, Yuan R (2015) Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel “on-off-on” switch system. Biomaterials 52:476–483. https://doi.org/10.1016/j.biomaterials.2015.02.058

    Article  CAS  Google Scholar 

  25. Diaconu M, Litescu SC, Radu GL (2010) Laccase-MWCNT-chitosan biosensor-a new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors Actuators B Chem 145:800–806. https://doi.org/10.1016/j.snb.2010.01.064

    Article  CAS  Google Scholar 

  26. Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nano 7:6420–6431. https://doi.org/10.1039/C5NR00585J

    CAS  Google Scholar 

  27. Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C606- and C706-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980. https://doi.org/10.1021/ja00036a056

    Article  CAS  Google Scholar 

  28. Shiraishi H, Itoh T, Hayashi H et al (2007) Electrochemical detection of E. Coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry 70:481–487. https://doi.org/10.1016/j.bioelechem.2006.07.011

    Article  CAS  Google Scholar 

  29. Lee SW, Hosokawa K, Kim S et al (2016) Porous silicon microarray for simultaneous fluorometric immunoassay of the biomarkers prostate-specific antigen and human glandular kallikrein 2. Microchim Acta 183:3321–3327. https://doi.org/10.1007/s00604-016-1986-1

    Article  CAS  Google Scholar 

  30. Xu S, Liu Y, Wang T, Li J (2011) Positive potential operation of a cathodic Electrogenerated Chemiluminescence Immunosensor based on Luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823. https://doi.org/10.1021/ac200237j

    Article  CAS  Google Scholar 

  31. Salimi A, Kavosi B, Fathi F, Hallaj R (2013) Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: application as cancer biomarker for prostatebiopsies. Biosens Bioelectron 42:439–446. https://doi.org/10.1016/j.bios.2012.10.053

    Article  CAS  Google Scholar 

  32. Jang HD, Kim SK, Chang H, Choi J-W (2015) 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron 63:546–551. https://doi.org/10.1016/j.bios.2014.08.008

    Article  CAS  Google Scholar 

  33. Mao K, Wu D, Li Y et al (2012) Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal Biochem 422:22–27. https://doi.org/10.1016/j.ab.2011.12.047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chongqing Municipal Education Commission science and technology research project Foundation of China (KJ1400211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xiang.

Ethics declarations

The author(s) declare that they have no competing interests.

Eletronic supplementary material

ESM 1

(DOCX 2659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Yan, P., Zhang, X. et al. Ultrasensitive amperometric determination of PSA based on a signal amplification strategy using nanoflowers composed of single-strand DNA modified fullerene and Methylene Blue, and an improved surface-initiated enzymatic polymerization. Microchim Acta 184, 4341–4349 (2017). https://doi.org/10.1007/s00604-017-2476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2476-9

Keywords

Navigation