Skip to main content

Advertisement

Log in

PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the synthesis, characterization and electrochemical sensing performance of a PrFeO3-MoS2 nanocomposite. Graphene-like MoS2 sheets and a perovskite-type PrFeO3 were synthesized via a hydrothermal and a sol-gel method, respectively. Finally, PrFeO3-MoS2 nansheets were synthesized by using sodium molybdate as a source for molybdenum and thiourea as the source for sulfur. The nansheets were characterized by transmission electron microscopy and X-ray diffraction. The electrochemical behavior of the nanosheets deposited on a glassy carbon electrode was studied via electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrodes display strong response to nitrite. At a scan rate of 100 mV·s−1, the current at the oxidation peak at 0.85 V (vs. SCE) increases linearly in the 0.005 to 3 mM nitrite concentration range. The detection limit is 1.67 μmol·L−1 (S/N = 3). The sensor is selective, stable and reproducible. It was successfully applied to the determination of nitrite in (spiked) real samples, and appropriate recoveries were obtained.

PrFeO3-MoS2 nanocomposites were employed to fabricate an electrochemical sensor for nitrite. The sensor exhibits excellent electrochemical catalysis towards the oxidation of nitrite with good stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Y, Chen P, Wen F, Yuan B, Wang H (2016) Fe3O4 nanospheres on MoS2 nanoflake: Electrocatalysis and detection of Cr (VI) and nitrite. J Electroanal Chem 761:14–20. doi:10.1016/jelechem.2015.12.004

    Article  CAS  Google Scholar 

  2. Liu YM, Shi GF, Zhang JJ, Zhou M, Cao JT, Huang KJ, Ren SW (2014) A novel label-free electrochemiluminescence aptasensor based on layered flowerlike molybdenum sulfide–grapheme nanocomposites as matrix. Colloids Surf, B 122:287–293. doi:10.1016/colsurfb.2014.07.011

    Article  CAS  Google Scholar 

  3. Ye JB, Yu ZT, Chen WX, Chen QN, Xu SR, Liu R (2016) Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon 107:711–722. doi:10.1016/carbon.2016.06.074

    Article  CAS  Google Scholar 

  4. Gan XR, Zhao HM, Quan X (2017) Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 89:56–71. doi:10.1016/bios.2016.03.042

    Article  CAS  Google Scholar 

  5. Parlak O, İncel A, Uzun L, Turner AP, Tiwari A (2017) Structuring au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89:545–550. doi:10.1016/bios.2016.03.024

    Article  CAS  Google Scholar 

  6. Li XY, Du XZ (2017) Molybdenum disulfide nanosheets supported au-Pd bimetallicnanoparticles for non-enzymatic electrochemical sensing of hydrogenperoxide and glucose. Sensors Actuators B 239:536–543. doi:10.1016/snb.2016.08.048

    Article  CAS  Google Scholar 

  7. Zheng W, Li GJ, Liu LH, Chen W, Weng WJ, Sun W (2016) Electrochemical behaviors of horseradish peroxidase on MoS2 nanosheets modified electrode. Int J Electrochem Sci 11:7584–7593. doi:10.20964/2016.09.15

    Article  CAS  Google Scholar 

  8. Shuai HL, Huang KJ, Chen YX, Fang LX, Jia MP (2016) Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens Bioelectron 89:989–997. doi:10.1016/bios.2016.10.051

    Article  Google Scholar 

  9. Zhu LL, Zhang Y, Xu PC, Wen WJ, Li XX, Xu JQ (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606. doi:10.1016/bios.2016.02.019

    Article  CAS  Google Scholar 

  10. Xu H, Hu XL, Zhang LZ (2008) Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3 ( Ln = La, Pr, Nd, Sm, Eu, Gd ). Cryst Growth Des 8:2061–2065. doi:10.1021/cg800014b

    Article  CAS  Google Scholar 

  11. Zhang L, Hu JF, Song P, Qin HW, Liu XD, Jiang MH (2005) Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-material. Physica B 370:259–263. doi:10.1016/physb.2005.09.020

    Article  CAS  Google Scholar 

  12. Yuan L, Huang KK, Wang S, Hou CM, Wu XF, Zou B, Feng SH (2016) Crystal shape tailoring in perovskite structure rare-earth ferrites REFeO3 (RE = La, Pr, Sm, Dy, Er, and Y) and shape-dependent magnetic properties of YFeO3. Cryst Growth Des 16:6522–6530. doi:10.1021/acs.cgd.6b01219

    Article  CAS  Google Scholar 

  13. Morales LA, Sierra-Gallego G, Barrero CA, Arnache O (2016) Relative recoilless F-factors in REFeO3 (RE = rare-earth La, Pr, Nd and Sm) orthoferrites synthesized by self-combustion method. Mater Sci Eng B 211:94–100. doi:10.1016/mseb.2016.06.005

    Article  CAS  Google Scholar 

  14. Saha S, Chanda S, Dutta A, Sinha TP (2016) Dielectric relaxation of PrFeO3 nanoparticles. Solid State Sci 58:55–63. doi:10.1016/solidstatesciences.2016.05.013

    Article  CAS  Google Scholar 

  15. Thirumalairajan S, Girija K, Ganesh I, Mangalaraj D, Viswanathan C, Balamurugan A, Ponpandian N (2012) Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity. Chem Eng J 209:420–428. doi:10.1016/cej.2012.08.012

    Article  CAS  Google Scholar 

  16. Mihalik M, Jaglicic Z, Fitta M, Kavecansky V, Csach K, Budziak A, Briancin J, Zentkova M, Mihalik M (2016) Structural and magnetic study of PrMn1-xFexO3 compounds. J Alloys Compd 687:652–661. doi:10.1016/jallcom.2016.06.177

    Article  CAS  Google Scholar 

  17. Niwa E, Sato T, Watanabe Y, Toyota Y, Hatakeyama Y, Judai K, Shozugawa K, Matsuo M, Hashimoto T (2015) Dependence of crystal symmetry, electrical conduction property and electronic structure of LnFeO3 (Ln: La, Pr, Nd, Sm) on kinds of Ln3+. J Ceram Soc Jpn 123:501–506. doi:10.2109/jcersj2.123.501

    Article  CAS  Google Scholar 

  18. Mirvish SS (1995) Role of N-nitrosocompounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93:17–48. doi:10.1016/0304-3835(95)03786-V

    Article  CAS  Google Scholar 

  19. Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385. doi:10.1016/bios.2013.07.056

    Article  CAS  Google Scholar 

  20. Dai ZH, Bai HY, Hong M, Zhu Y, Bao J, Shen J (2008) A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosens Bioelectron 23:1869–1873. doi:10.1016/bios.2008.03.002

    Article  CAS  Google Scholar 

  21. Wang HW, Wang CQ, Yang BB, Zhai CY, Bin D, Zhang K, Yang P, Du YK (2015) A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite. Analyst 140:1291–1297. doi:10.1039/C4AN01924E

    Article  CAS  Google Scholar 

  22. Huang S-S, Liu L, Mei L-P, Zhou J-Y, Guo F-Y, Wang A-J, Feng J-J (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. MicrochimActa 183:791–797. doi:10.1007/s00604-015-1717-z

    CAS  Google Scholar 

  23. Khan MR, Wabaidur SM, Alothman ZA, Busquets R, Naushad M (2016) Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography–mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment. Talanta 152:513–520. doi:10.1016/talanta.2016.02.036

    Article  CAS  Google Scholar 

  24. Gapper LW, Fong BY, Otter DE, Indyk HE, Woollard DC (2004) Determination of nitrite and nitrate in dairy products by ion exchange LC with spectrophotometric detection. Int Dairy J 14:881–887. doi:10.1016/idairyj.2004.02.015

    Article  CAS  Google Scholar 

  25. Xiao WX, Xiao D, Xia JH, Chen ZC (2011) Fluorescent sensing of nitrite at nanomolar level using functionalized mesoporous silica. Microchim Acta 173:73–78. doi:10.1007/s00604-010-0524-9

    Article  CAS  Google Scholar 

  26. Wu J, Wang X, Lin Y, Zheng Y, Lin JM (2016) Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 154:73–79. doi:10.1016/talanta.2016.03.062

    Article  CAS  Google Scholar 

  27. Böhmer A, Pich A, Schmidt M, Haghikia A, Tsikas D (2016) Evidence by chromatography and mass spectrometry that inorganic nitrite induces S-glutathionylation of hemoglobin in human red blood cells. J Chromatogr B 1019:72–82. doi:10.1016/jchromb.2016.01.032

    Article  Google Scholar 

  28. Ding JB, Zhou Y, Li YG, Guo SJ, Huang XQ (2016) MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem Mater 28:2074–2080. doi:10.1021/acs.chemmater.5b04815

    Article  CAS  Google Scholar 

  29. Sheng Y, Liao LD, Bandla A, Liu YH, Thakor N, Tan MC (2016) Size and Shell effects on the Photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared Photoacoustic imaging. ACS Biomater Sci Eng 2:809–817. doi:10.1021/acsbiomaterials.6b00012

    Article  CAS  Google Scholar 

  30. Yan Y, Jia X, Yang Y (2015) Palladium nanoparticles supported on CNT functionalized by rare-earth oxides for solvent-free aerobic oxidation of benzyl alcohol. Catal Today 259:292–302. doi:10.1016/j.cattod.2015.07.021

    Article  Google Scholar 

  31. Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9:1602–1644. doi:10.1039/c5ee03858h

    Article  CAS  Google Scholar 

  32. Huang HP, Xu L, Yue YF, Lv LL (2017) A novel hydrogen peroxide biosensor based on hemoglobin/holmium phosphate nanocomposites. Chin J Anal Chem 45:111–117. doi:10.11895/j.Issn.0253-3820.160678

    CAS  Google Scholar 

  33. Huang HP, Yue YF, Li LL, Zhu JJ (2017) Rare earth oxide Dy2O3-au nanocomposite-based electrochemical sensor for sensitive determination of nitrite. J Electrochem Soc 164:H321–H325. doi:10.1149/2.0871706jes

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley 275:669–676

    Google Scholar 

  35. Wang JP, Zhao DY, Zhang Y, Li J, Xu C (2014) A highly sensitive sensor for the detection of nitrite based on a nanoporous Fe2O3–CoO composite. Anal Methods 6:3147–3151. doi:10.1039/C4AY00171K

    Article  CAS  Google Scholar 

  36. Huang X, Li YX, Chen YL, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensor Actuat B-Chem 134:780–786. doi:10.1016/snb.2008.06.028

    Article  CAS  Google Scholar 

  37. Pham XH, Li CA, Han KN, Huynh-Nguyen BC, Le TH, Ko E, Kim JH, Seong GH (2014) Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sensor Actuat B-Chem 193:815–822. doi:10.1016/snb.2013.12.034

    Article  CAS  Google Scholar 

  38. Zhao S, Zhang K, Sun YY, Sun CQ (2006) Hemoglobin/colloidal silver nanoparticles immobilized in titania sol–gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Bioelectrochemistry 69:10–15. doi:10.1016/j.bioelechem.2005.09.004

    Article  CAS  Google Scholar 

  39. Zhu WL, Zhou Y, Zhang JR (2009) Direct electrochemistry and electrocatalysis of myoglobin based on silica-coated gold nanorods/room temperature ionic liquid/silica sol–gel composite film. Talanta 80:224–230. doi:10.1016/j.talanta.2009.06.056

    Article  CAS  Google Scholar 

  40. Yue R, Lu Q, Zhou YK (2011) A novel nitrite biosensor based on single-layer graphene nanoplatelet–protein composite film. Biosens Bioelectron 26:4436–4441. doi:10.1016/j.bios.2011.04.059

    Article  CAS  Google Scholar 

  41. Wu WQ, Li YB, Jin JY, Wu HM, Wang SF, Ding Y, Ou JF (2016) Sensing nitrite with a glassy carbon electrode modified with a three-dimensional network consisting of Ni7S6 and multi-walled carbon nanotubes. Microchim Acta 183:3159–3166. doi:10.1007/s00604-016-1961-x

    Article  CAS  Google Scholar 

  42. Meng Z, Liu B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties f or nitrite electrooxidation. Microchim Acta 175:251–257. doi:10.1007/s00604-011-0688-y

    Article  CAS  Google Scholar 

  43. Chen L, Liu X, Wang C, Lv S, Chen C (2017) Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly (3, 4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchim Acta 184:2073–2079. doi:10.1007/s00604-017-2189-0

    Article  CAS  Google Scholar 

  44. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly (3, 4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727. doi:10.1007/s00604-017-2180-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21465013, 21005034 and 21501077), China Postdoctoral Science Foundation (Grant Nos. 2014 M551550) and Qingjiang Excellent Young Talents Program of Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Huang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lv, L., Xu, F. et al. PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Microchim Acta 184, 4141–4149 (2017). https://doi.org/10.1007/s00604-017-2446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2446-2

Keywords

Navigation