Skip to main content
Log in

White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemiresistive sensors for room temperature detection of liquid petroleum gases

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

The authors describe the preparation of PVA/WPPy/hBNNP nanocomposite films by solution casting method from poly(vinyl alcohol) (PVA), water soluble polypyrrole (WPPy), and using hexagonal boron nitride nanoparticles (hBNNP) as a reinforcing filler element. The structural, optical and electrical properties of the material are characterized by FTIR, X-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, and by electrochemical impedance spectroscopy. The nanocomposite films are shown to be viable chemiresistive sensors for sensitive and selective detection of liquid petroleum gas (LPG). The effect of hBNNP loading on the sensing performance was investigated. The nanocomposite films possess good mechanical flexibility and improved tensile strength. These PVA/WPPy/hBNNP nanocomposite film showed a maximum sensitivity (S, defined as a signal change compared to pure air) to LPG of up to S = 0.25% at a 600 ppm concentration at room temperature with response/recovery times of ~30/32 min for 6 wt% hBNNP loading in a PVA/WPPy matrix. The nanocomposite with 6 wt% filler loading shows good selectivity for LPG over vapors of benzene, chloroform, ethanol and acetone. Therefore, this sensor film is a good candidate for qualitative detection of LPG.

Liquid petroleum gas (LPG) sensor has been fabricated based on the use of poly(vinyl alcohol) (PVA), water soluble polypyrrole (WPPy) and hexagonal boron nitride nanoparticles (hBNNP) and exhibits excellent LPG sensitivity (S = 0.25%, at 600 ppm at room temperature) and selectivity over volatile organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    Article  CAS  Google Scholar 

  2. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  3. Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981

    Article  CAS  Google Scholar 

  4. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353

    Article  CAS  Google Scholar 

  5. Sadasivuni KK, Kafy A, Zhai L, Ko H-U, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Article  CAS  Google Scholar 

  6. Sadasivuni KK, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25

    Article  CAS  Google Scholar 

  7. Sadasivuni KK, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740

    Article  CAS  Google Scholar 

  8. Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3:16068–16079

    Article  CAS  Google Scholar 

  9. Sadasivuni KK, Kafy A, Kim H-C, Ko H-U, Mun S, Kim J (2015) Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth Met 206:154–161

    Article  CAS  Google Scholar 

  10. Thangamani G, Deshmukh K, Ahamed MB, Chidambaram K, Saranya KC, Khadheer Pasha SK (2015) Facile synthesis of nickel oxide nanoparticles using Solvothermal method and their implementation in sensor applications. Int J Chem Tech Res 8:70–76

    CAS  Google Scholar 

  11. Shukla D, Himabindu K, Chidambaram K, Deshmukh K, Ahamed MB, Khadheer Pasha SK (2015) Synthesis of CeO2 nanoparticles via Solvothermal route and their application in sensors. Int J Chem Tech Res 8:46–53

    CAS  Google Scholar 

  12. Deshmukh K, Basheer AM, Sadasivuni KK, Deepalekshmi P, Rajendra RD, Ajinkya MT, Khadheer Pasha SK, Anji Reddy P, AlMaadeed MAA, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27

    Article  Google Scholar 

  13. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Khadheer Pasha SK (2016) Zeolite 4A filled poly (3, 4-ethylenedioxythiophene):(polystyrenesulfonate) (PEDOT: PSS) and poly(vinyl alcohol) (PVA) blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv Mater Lett 7:996–1002

    Article  CAS  Google Scholar 

  14. Khadheer Pasha SK, Deshmukh K, Ahamed MB, Chidambaram K, Mohanapriya MK, Arunai Nambi Raj N (2015) Investigation of microstructure, morphology, mechanical, and dielectric properties of PVA/PbO Nanocomposites. Adv Polym Technol 00:1–15

    Google Scholar 

  15. Deshmukh K, Ahmad J, Hagg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic poly (vinyl alcohol). Ionics 20:957–967

    Article  CAS  Google Scholar 

  16. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016) Synergistic effect of vanadium pentoxide and graphene oxide in poly(vinyl alcohol) for energy storage application. Eur Polym J 76:14–27

    Article  CAS  Google Scholar 

  17. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Khadheer Pasha SK, AlMaadeed MAA, Chidambaram K (2016) Graphene oxide reinforced poly(vinyl alcohol)/polyethylene glycol blends composites as high-performance dielectric material. J Polym Res 23:159

    Article  Google Scholar 

  18. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016) Eco-friendly synthesis of Graphene oxide reinforced Hydroxypropyl methylcellulose (HPMC)/poly(vinyl alcohol) (PVA) blend Nanocomposites filled with zinc oxide (ZnO) nanoparticles for high-k capacitor applications. PolymPlast Tech Eng 55:1240

    Article  CAS  Google Scholar 

  19. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Khadheer Pasha SK (2015) Structural, Morphological and dielectric properties of multiphase Nanocomposites consisting of polycarbonate, barium titanate and carbon black nanoparticles. Int J Chem Tech Res 8:32–41

    CAS  Google Scholar 

  20. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2016) Impedance spectroscopy, ionic conductivity and dielectric studies of new li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci Mater Electron 27:11410–11424

    Article  CAS  Google Scholar 

  21. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Khadheer Pasha SK, Deshmukh RR, Chidambaram K (2016) Graphene oxide reinforced poly (4-styrenesulfonic acid)/poly(vinyl alcohol) blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201

    Article  Google Scholar 

  22. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2016) Biopolymer composites with enhanced dielectric performance: Interface Engineering. In book Biopolymer Composites in Electronics, Elsevier, UK, pp 27–128

    Google Scholar 

  23. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Khadheer Pasha SK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134:44427–44438

    Article  Google Scholar 

  24. Yavuz O, Ram MK, Aldissi M, Poddar P, Srikanth H (2005) Polypyrrole composites for shielding application. Synth Met 151:211–217

    Article  CAS  Google Scholar 

  25. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Khadheer Pasha SK (2016) Influence of cerium oxide (CeO2) nanoparticles on the structural, Morphological, mechanical and dielectric properties of PVA/PPy blend Nanocomposites. Materials Today Proceed 3:1864–1873

    Article  Google Scholar 

  26. Zifeng W, Yuqiao F, Wenjun M, Chunyi Z (2014) Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Res Lett 9:643

    Article  Google Scholar 

  27. Zhi CY, Bando Y, Tang CC, Golberg D (2010) Boron nitride nanotubes. Mater SciEng R 70:92–111

    Google Scholar 

  28. Bernard S, Philippe M (2014) Polymer-derived boron nitride: a review on the chemistry, shaping and ceramic conversion of Borazine derivatives.Materials7:7436–7459

  29. Sun C, Yu H, Liqiang X, Qiang M, Yitai Q (2010) Recent development of the synthesis and Engineering applications of one-dimensional boron nitride Nanomaterials. J Nanomater 2010:16

    Google Scholar 

  30. Kang KK, Allen H, Xiaoting J, Soo MK, Yumeng S, Mildred D, Tomas P, Jing K (2012) Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for Graphene devices. Am Chem Soc 6:8583–8590

    Google Scholar 

  31. Lin Y, Williams T, Connell J (2010) Soluble, exfoliated hexagonal boron nitride Nanosheets. J Phys Chern Lett 1:277–283

    Article  Google Scholar 

  32. Linshu J, Jun HK, Hoh YS, Lim JO, Lee DD, Huh JS (2005) Sensing characteristics of polypyrrole–poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization. Sensors Actuators B 105:132–137

    Article  Google Scholar 

  33. Ahmad J, Deshmukh K, Hagg MB (2013) Influence of TiO2 on the chemical, mechanical and gas separation properties of poly(vinyl alcohol)-titanium dioxide (PVA-TiO2) Nanocomposite membranes. Int J Polym Anal Charact 18:287–296

    Article  CAS  Google Scholar 

  34. Ahmad J, Deshmukh K, Habib M, Hagg MB (2014) Influence of TiO2 nanoparticles on the Morphological, thermal and solution properties of PVA/TiO2 Nanocomposite membranes. Arab J SciEng 39:6805–6814

    Article  CAS  Google Scholar 

  35. Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of poly (vinyl alcohol) and gelatin blend films. J Appl Polym Sci 109:1328–1337

    Article  CAS  Google Scholar 

  36. Pawde SM, Deshmukh K (2008) Characterization of poly(vinyl alcohol)/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437

    Article  CAS  Google Scholar 

  37. Abdulhakeem B, Farshad B, Damilola M, Fatemeh T, Mopeli F, Julien D, Ncholu M (2014) Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Adv 4:39066–39072

    Article  CAS  Google Scholar 

  38. Atif I, Tariq Y, Muhammad JA, Zahid I, Aneela S, Misbah S, Mk S, Tahir J (2016) Impedance spectroscopy of chitosan/poly(vinyl alcohol) films. J Solid State Electrochem 20:571–578

    Article  Google Scholar 

  39. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184

    Article  CAS  Google Scholar 

  40. Thakur S, Patil P (2016) Enhanced LPG sensing-performance at room temperature of poly (o-anisidine)–CeO2 nanocomposites. RSC Adv 6:45768–45782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Gounder Thangamani J is grateful to the management of VIT University, Vellore for providing Research Associateship (RA) to carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Khadheer Pasha.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 4604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gounder Thangamani, J., Deshmukh, K., Sadasivuni, K.K. et al. White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemiresistive sensors for room temperature detection of liquid petroleum gases. Microchim Acta 184, 3977–3987 (2017). https://doi.org/10.1007/s00604-017-2402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2402-1

Keywords

Navigation