Skip to main content
Log in

Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical strategy for ultrasensitive and specific detection of microRNA (miRNA). It is based on both multicomponent nucleic acid enzyme (MNAzyme) amplification and rolling circle amplification (RCA). In the presence of target miRNAs, partial enzyme A (partzyme A) and partial enzyme B (partzyme B) are assembled to form active MNAzymes. Once formed, the MNAzymes catalyze the cleavage of the hairpin substrates to liberate biotinylated fragments which hybridized with the capture probes immobilized on a gold electrode. The RCA is then initiated to form a product that binds many detection probes. Finally, the amperometric signal (best acquired at a working voltage of 0.22 V vs. Ag/AgCl) is obtained by employing the streptavidinylated alkaline phosphatase as the enzyme. This biosensor has a 1.66 fM detection limit, and a dynamic range that extends from 10 fM to 1 nM. It displays specificity down to single mismatch discrimination of target miRNAs and good reproducibility. It was successfully applied to the determination of miRNA in total RNA samples extracted from human breast adenocarcinoma MCF-7 cells.

Cascade signal amplification strategy for microRNA electrochemical detection based on multicomponent nucleic acid enzyme (MNAzyme)-mediated rolling circle amplification. MCH: 6-mercapto-1-hexanol; BSA: bovine serum albumin; dNTP: deoxy-ribonucleoside triphosphate; ST-AP: streptavidin-alkaline phosphatase; α-NP: α-naphthyl phosphate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  Google Scholar 

  2. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355

    Article  CAS  Google Scholar 

  3. Siegismund CS, Rohde M, Kühl U, Lassner D (2014) Multiparametric diagnostics of cardiomyopathies by microRNA signatures. Microchim Acta 181:1647–1653

    Article  CAS  Google Scholar 

  4. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Jr RB, Chen A, Hornstein E (2010) MiRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci 107:13111–13116

    Article  CAS  Google Scholar 

  5. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  Google Scholar 

  6. Hammond SM (2006) MicroRNA detection comes of age. Nat Methods 3:12–13

    Article  CAS  Google Scholar 

  7. Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly (amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84

    Article  CAS  Google Scholar 

  8. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704

    Article  CAS  Google Scholar 

  9. Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196

    Article  CAS  Google Scholar 

  10. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  11. Liu T, Chen X, Hong CY, XP X, Yang HH (2014) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181:731–736

    Article  CAS  Google Scholar 

  12. Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180:397–403

    Article  CAS  Google Scholar 

  13. Wang M, Yang Z, Guo Y, Wang X, Yin H, Ai S (2015) Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode. Microchim Acta 182:241–248

    Article  CAS  Google Scholar 

  14. Zhang Y, Tang L, Yang F, Sun Z, Zhang G (2015) Highly sensitive DNA-based fluorometric mercury(II) bioassay based on graphene oxide and exonuclease III-assisted signal amplification. Microchim Acta 182:1535–1541

    Article  CAS  Google Scholar 

  15. Wang M, Fu Z, Li B, Zhou Y, Yin H, Ai S (2014) One-step, ultrasensitive, and electrochemical assay of microRNAs based on T7 exonuclease assisted cyclic enzymatic amplification. Anal Chem 86:5606–5610

    Article  CAS  Google Scholar 

  16. Zhang Y, Yan Y, Chen W, Cheng W, Li S, Ding X, Li D, Wang H, Ju H, Ding S (2015) A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 68:343–349

    Article  CAS  Google Scholar 

  17. Zhao X, Gong L, Zhang X, Yang B, Fu T, Hu R, Tan W, Yu R (2013) Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. Anal Chem 85:3614–3620

    Article  CAS  Google Scholar 

  18. Freage L, Wang F, Orbach R, Willner I (2014) Multiplexed analysis of genes and of metal ions using enzyme/DNAzyme amplification machineries. Anal Chem 86:11326–11333

    Article  CAS  Google Scholar 

  19. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  20. Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263

    Article  CAS  Google Scholar 

  21. Mokany E, Bone SM, Young PE, Doan TB, Todd AV (2010) MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J Am Chem Soc 132:1051–1059

    Article  CAS  Google Scholar 

  22. Mokany E, Tan YL, Bone SM, Fuery CJ, Todd AV (2013) MNAzyme qPCR with superior multiplexing capacity. Clin Chem 59:419–426

    Article  CAS  Google Scholar 

  23. Kolpashchikov DM (2007) A binary deoxyribozyme for nucleic acid analysis. Chembiochem 8:2039–2042

    Article  CAS  Google Scholar 

  24. Jie G, Qin Y, Meng Q, Wang J (2015) Autocatalytic amplified detection of DNA based on a CdSe quantum dot/folic acid electrochemiluminescence energy transfer system. Analyst 140:79–82

    Article  CAS  Google Scholar 

  25. Zagorovsky K, Chan WC (2013) A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew Chem Int Ed 52:3168–3171

    Article  CAS  Google Scholar 

  26. Ren K, Wu J, Ju H, Yan F (2015) Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker. Anal Chem 87:1694–1700

    Article  CAS  Google Scholar 

  27. Gerasimova YV, Kolpashchikov DM (2010) Nucleic acid detection using MNAzymes. Chem Biol 2:104–106

    Article  Google Scholar 

  28. Xu Z, Yin H, Tian Z, Zhou Y (2014) Electrochemical immunoassays for the detection the activity of DNA methyltransferase by using the rolling circle amplification technique. Microchim Acta 181:471–477

    Article  CAS  Google Scholar 

  29. Chapin SC, Doyle PS (2011) Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal Chem 83:7179–7185

    Article  CAS  Google Scholar 

  30. Cheng W, Ding L, Chen Y, Yan F, Ju H, Yin Y (2010) A facile scanometric strategy for ultrasensitive detection of protein using aptamer-initiated rolling circle amplification. Chem Commun 46:6720–6722

    Article  CAS  Google Scholar 

  31. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 48:3268–3272

    Article  CAS  Google Scholar 

  32. Hofmann S, Huang Y, Paulicka P, Kappel A, Katu HA, Keller A, Meder B, Stähler CF, Gumbrecht W (2015) Double-stranded ligation assay for the rapid multiplex quantification of microRNAs. Anal Chem 87:12104–12111

    Article  CAS  Google Scholar 

  33. Hou T, Li W, Liu X, Li F (2015) Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific MicroRNA assay. Anal Chem 87:11368–11374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (81101638) and the Science and Technology Plan Project of Yu Zhong District of Chongqing (20150114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Yan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Jianru Yang and Min Tang contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tang, M., Diao, W. et al. Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183, 3061–3067 (2016). https://doi.org/10.1007/s00604-016-1958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1958-5

Keywords

Navigation