Skip to main content
Log in

Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared graphene quantum dot-europium(III) complex composites by noncovalently connecting chelating ligands dibenzoylmethane (DBM) and 1,10-phenanthroline (Phen) with graphene quantum dots (GQDs) first, followed by coordination to Eu(III). The resulting composites are well water-soluble and display red fluorescence of high color purity. The composites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Aqueous solutions of the composites under 365 nm excitation display fluorescence with a peak at 613 nm and a quantum yield as high as 15.5 %. The good water solubility and stable photoluminescence make the composites very different from other Eu(III)-based coordination complexes. The composites are cell viable and can be used to label both the cell membrane and the cytoplasm of MCF-7 cells. They are also shown to act as bioprobes for in-vivo localization of tumorous tissue. In our perception, such composites are expected to possess wide scope because of the many functionalizations that are possible with GQDs.

Synthesis of red fluorescent graphene quantum dot-europium complex composites for use in bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519

    Article  CAS  Google Scholar 

  2. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743

    Article  CAS  Google Scholar 

  3. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  CAS  Google Scholar 

  4. Zhu SJ, Zhang JH, Tang SJ, Qiao CY, Wang L, Wang HY, Liu X, Li B, Li YF, Yu WL, Wang XF, Sun HC, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740

    Article  CAS  Google Scholar 

  5. Zhang M, Bai LL, Shang WH, Xie WJ, Ma H, Fu YY, Fang DC, Sun H, Fan LZ, Han M, Liu CM, Yang SH (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461–7467

    Article  CAS  Google Scholar 

  6. Fan ZT, Li YC, Li XH, Fan LZ, Zhou SX, Fang DC, Yang SH (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70:149–156

    Article  CAS  Google Scholar 

  7. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182:2173–2181

    Article  CAS  Google Scholar 

  8. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N,P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183:821–826

    Article  CAS  Google Scholar 

  9. Yuan XC, Liu ZM, Guo ZY, Ji YH, Jin M, Wang XP (2014) Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett 9:108

    Article  Google Scholar 

  10. Hu SL, Zhao Q, Chang Q, Yang JL, Liu J (2014) Enhanced performance of Fe3+ detection via fluorescence resonance energy transfer between carbon quantum dots and Rhodamine B. RSC Adv 4:41069–41075

    Article  CAS  Google Scholar 

  11. Fuyuno N, Kozawa D, Miyauchi Y, Mouri S, Kitaura R, Shinohara H, Yasuda T, Komatsu N, Matsuda K (2014) Drastic change in photoluminescence properties of graphene quantum dots by chromatographic separation. Adv Optical Mater 2:983–989

    Article  CAS  Google Scholar 

  12. Ge JC, Lan MH, Zhou BJ, Liu WM, Guo L, Wang H, Jia QY, Niu GL, Huang X, Zhou HY, Meng XM, Wang PF, Lee CS, Zhang WJ, Han XD (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596–4603

    CAS  Google Scholar 

  13. Dong HL, Kuzmanoski A, Gossl DM, Popescu R, Gerthsen D, Feldmann C (2014) Polyol-mediated C-dot formation showing efficient Tb3+/Eu3+ emission. Chem Commun 50:7503–7506

    Article  CAS  Google Scholar 

  14. Tan XY, Li YC, Li XH, Zhou SX, Fan LZ, Yang SH (2015) Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun 51:2544–2546

    Article  CAS  Google Scholar 

  15. Eliseeva SV, Bunzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227

    Article  CAS  Google Scholar 

  16. Ruan M, Niu CG, Zeng GM, Qin PZ, Wang XY, Huang DW, Huang J, Fan CZ (2011) Rapid detection of Staphylococcus aureus via a sensitive DNA hybridization assay based on a long-lifetime luminescent europium marker. Microchim Acta 175:105–112

    Article  CAS  Google Scholar 

  17. Kin E, Fukuda T, Kato S, Honda Z, Kamata N (2009) pH and concentration dependence of luminescent characteristics in glass-encapsulated Eu-complex. J Sol-Gel Sci Technol 50:409–414

    Article  CAS  Google Scholar 

  18. Maggini L, Traboulsi H, Yoosaf K, Mohanraj J, Wouters J, Pietraszkiewicz O, Pietraszkiewicz M, Armaroli N, Bonifazi D (2010) Electrostatically-driven assembly of MWCNTs with a europium complex. Chem Commun 47:1625–1627

    Article  Google Scholar 

  19. Bai JM, Zhang L, Liang RP, Qiu JD (2013) Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem Eur J 19:3822–3826

    Article  CAS  Google Scholar 

  20. Yuan FL, Ding L, Li YC, Li XH, Fan LZ, Fang DC, Yang SH (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscle 7:11727–11733

    Article  CAS  Google Scholar 

  21. Cao YW, Yang T, Feng JC, Wu PY (2010) Decoration of graphene oxide sheets with luminescent rare-earth complexes. Carbon 49:1502–1507

    Article  Google Scholar 

  22. Ryu J, Lee E, Lee K, Jang J (2015) A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence. J Mater Chem B 3:4865–4870

    Article  CAS  Google Scholar 

  23. Bian ZQ, Wang KZ, Jin LP (2002) Syntheses, spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(III) ternary complexes with dibenzoylmethane. Polyhedron 21:313–319

    Article  CAS  Google Scholar 

  24. Babij M, Mondry A (2011) Synthesis, structure and spectroscopic studies of europium complex with S(+)-mandelic acid. J Rare Earths 29:1188–1191

    Article  CAS  Google Scholar 

  25. Yu MG, Chen GX, Liu JW, Tang BL, Huang WT (2013) Preparation and characteristics of core-shell structure Eu(DBM)3Phen@SiO2 micro-sphere. J Mater Sci Technol 29:801–805

    Article  CAS  Google Scholar 

  26. Accorsi G, Armaroli N, Parisini A, Meneghetti M, Marega R, Parto M, Bonifazi D (2007) Wet adsorption of a luminescent EuIII complex on carbon nanotubes sidewalls. Adv Funct Mater 17:2975–2982

    Article  CAS  Google Scholar 

  27. Ai KL, Zhang BH, Lu LH (2009) Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem Int Ed 48:304–308

    Article  CAS  Google Scholar 

  28. Azab HA, El-Korashy SA, Anwar ZM, Hussein BHM, Khairy GM (2010) Synthesis and fluorescence properties of Eu-anthracene-9-carboxylic acid towards N-acetyl amino acids and nucleotides in different solvents. Spectrochim Acta A 75:21

    Article  CAS  Google Scholar 

  29. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  Google Scholar 

  30. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee YK (2013) In vivo biodistribution and toxicology of carboxylated graphene Quantum dots. ACS Nano 7:6858–6867

    Article  CAS  Google Scholar 

  31. Yuan YY, Ding D, Li K, Liu J, Liu B (2014) Red-missive Carbon Dots for fluorescent, photoacoustic, and thermal theranostics in living. Small 10:1967–1975

    Article  CAS  Google Scholar 

  32. Ge JC, Jia QY, Liu WM, Guo L, Liu QY, Lan MH, Zhang HY, Meng XM, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  Google Scholar 

  33. Guo RH, Zhou SX, Li YC, Li XH, Fan LZ, Voelcker NH (2015) Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells. ACS Appl Mater Interfaces 7:23958

    Article  CAS  Google Scholar 

  34. Huang CL, Huang CC, Mai FD, Yen CL, Tzing SH, Hsieh HT, Lingd YC, Chang JY (2015) Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J M Chem B 3:651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC of China (21573019), the Major Research Plan of NSFC (21233003), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louzhen Fan or Hong Fan.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, S., Fan, L. et al. Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform. Microchim Acta 183, 2605–2613 (2016). https://doi.org/10.1007/s00604-016-1909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1909-1

Keywords

Navigation