Skip to main content
Log in

Colorimetric and visual detection of silver(I) using gold nanoparticles modified with furfuryl alcohol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric assay for Ag(I) ions that is highly selective over other metal ions. It is based on the measurement of changes in the surface plasmon resonance absorbance (at 520 nm) of gold nanoparticles (AuNPs) modified with furfuryl alcohol (Fu-AuNPs). The AuNPs were modified with mixed monolayers of 6-nitrohexane-1-thiol and octanethiol as capping ligands. Next, these AuNPs were modified with furfuraldehyde via an interfacial Henry reaction. The unique structure and presence of heteroatoms in the resulting product of the Henry reaction enable the Fu-AuNPs to recognize very low concentrations of Ag(I) ions, and this results in a visually and instrumentally detectable color change from pale-brown to dark blue. TEM images and optical absorption data show that this color change is the result of an aggregation of the Fu-AuNPs upon addition of Ag(I). In contrast, divalent ions such as Cu(II), Zn(II), Co(II), and Pb(II) do not aggregate, or they cause the formation of a black precipitate. The recognition mechanism is attributed to the formation of a sandwich between Ag(I) ion and two furfuryl alcohol moieties that are attached to separate nanoparticles. This simple and fast method can be used to determine Ag(I) ions with a limit of detection as low as 12 nM.

We describe an optical assay for Ag(I) ions that is based on the color changes (from pale brown to blue) of gold nanoparticles modified with furfuryl alcohol. The recognition mechanism is attributed to the formation of a 2 + 1 sandwich. The limit of detection is 12 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Hua Z, Yang B, Chen W, Bai X, Xu Q, Gu H (2014) Surface functionalized magnetic PVA microspheres for rapid naked-eye recognizing of copper(II) ions in aqueous solutions. Appl Surf Sci 317:226–235. doi:10.1016/j.apsusc.2014.08.092

    Article  CAS  Google Scholar 

  2. Li L, Li B, Qi Y, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393(8):2051–2057. doi:10.1007/s00216-009-2640-0

    Article  CAS  Google Scholar 

  3. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862. doi:10.1021/cr0680282

    Article  CAS  Google Scholar 

  4. Oehme I, Wolfbeis O (1997) Optical sensors for determination of heavy metal ions. Mikrochim Acta 126(3–4):177–192. doi:10.1007/BF01242319

    Article  CAS  Google Scholar 

  5. Glogowski E, He J, Russell TP, Emrick T (2005) Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem Commun 32:4050–4052. doi:10.1039/B503670D

    Article  Google Scholar 

  6. Srivastava S, Frankamp BL, Rotello VM (2005) Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem Mater 17(3):487–490. doi:10.1021/cm048579d

    Article  CAS  Google Scholar 

  7. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253(11–12):1607–1618. doi:10.1016/j.ccr.2009.01.005

    Article  CAS  Google Scholar 

  8. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi:10.1021/cr2001178

    Article  CAS  Google Scholar 

  9. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650. doi:10.1021/ja993825l

    Article  CAS  Google Scholar 

  10. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6(3–4):335–340. doi:10.1016/j.stam.2005.03.007

    Article  CAS  Google Scholar 

  11. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18(26):10407–10410. doi:10.1021/la0260335

    Article  CAS  Google Scholar 

  12. Reynolds AJ, Haines AH, Russell DA (2006) Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate−carbohydrate interactions. Langmuir 22(3):1156–1163. doi:10.1021/la052261y

    Article  CAS  Google Scholar 

  13. Weng Z, Wang H, Vongsvivut J, Li R, Glushenkov AM, He J, Chen Y, Barrow CJ, Yang W (2013) Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Anal Chim Acta 803:128–134. doi:10.1016/j.aca.2013.09.036

    Article  CAS  Google Scholar 

  14. Gao X, Zheng H, Shang G-q XJ-G (2007) Colorimetric detection of fluoride in an aqueous solution using Zr(IV)–EDTA complex and a novel hemicyanine dye. Talanta 73(4):770–775. doi:10.1016/j.talanta.2007.04.063

    Article  CAS  Google Scholar 

  15. Altintas Z, Kallempudi SS, Gurbuz Y (2014) Gold nanoparticle modified capacitive sensor platform for multiple marker detection. Talanta 118:270–276. doi:10.1016/j.talanta.2013.10.030

    Article  CAS  Google Scholar 

  16. Nakamura-Tsuruta S, Kishimoto Y, Nishimura T, Suda Y (2008) One-step purification of lectins from banana pulp using sugar-immobilized gold nano-particles. J Biochem 143(6):833–839. doi:10.1093/jb/mvn038

    Article  CAS  Google Scholar 

  17. Silver S, Phung L, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33(7):627–634. doi:10.1007/s10295-006-0139-7

    Article  CAS  Google Scholar 

  18. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108. doi:10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  19. Yang XJ, Foley R, Low GKC (2002) A modified digestion procedure for analysing silver in environmental water samples. Analyst 127(2):315–318. doi:10.1039/B109959K

    Article  CAS  Google Scholar 

  20. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97(8):3083–3132. doi:10.1021/cr940394a

    Article  CAS  Google Scholar 

  21. Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Commun 46:4872–4874. doi:10.1039/B712421J

    Article  Google Scholar 

  22. Alizadeh A, Khodaei MM, Abdi G, Kordestani D (2012) The first report on chemoselective biguanide-catalyzed henry reaction under neat conditions. Bull Kor Chem Soc 33(11):3640–3644

    Article  CAS  Google Scholar 

  23. Abdi G, Alizadeh A, Khodaei M, Shamsuddin M, Ghouzivand S, Fakhari M, Beygzadeh M, Fallah A (2015) N, N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: highly selective and feasible organocatalyst for synthesis of β-nitroalcohols. Iran J Catal 5(3):261–268

    Google Scholar 

  24. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commun 7:801–802. doi:10.1039/C39940000801

    Article  Google Scholar 

  25. Kell AJ, Alizadeh A, Yang L, Workentin MS (2005) Monolayer-protected gold nanoparticle coalescence induced by photogenerated radicals. Langmuir 21(21):9741–9746. doi:10.1021/la051655m

    Article  CAS  Google Scholar 

  26. Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L (2010) Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837

    Article  CAS  Google Scholar 

  27. Zhan S, Xu H, Zhan X, Wu Y, Wang L, Lv J, Zhou P (2015) Determination of silver (I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of Rhodamine B. Microchim Acta 182(7–8):1411–1419

    Article  CAS  Google Scholar 

  28. Jiao H, Zhang L, Liang Z, Peng G, Lin H (2014) Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Microchim Acta 181(11–12):1393–1399

    Article  CAS  Google Scholar 

  29. Lou T, Chen Z, Wang Y, Chen L (2011) Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces 3(5):1568–1573

    Article  CAS  Google Scholar 

  30. Wang F, Wu Y, Zhan S, He L, Zhi W, Zhou X, Zhou P (2013) A simple and sensitive colorimetric detection of silver ions based on cationic polymer-directed AuNPs aggregation. Aust J Chem 66(1):113–118

    Article  CAS  Google Scholar 

  31. Tan E, Yin P, Lang X, Wang X, You T, Guo L (2012) Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering. Analyst 137(17):3925–3928

    Article  CAS  Google Scholar 

  32. Li H, Zhai J, Sun X (2011) Sensitive and selective detection of silver (I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform. Langmuir 27(8):4305–4308

    Article  CAS  Google Scholar 

  33. Pu W, Zhao Z, Wu L, Liu Y, Zhao H (2015) Label-free detection of Ag+ based on gold nanoparticles and Ag+ −specific DNA. J Nanosci Nanotechnol 15(8):5524–5529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported partly by Razi University, Kermanshah, Iran. G. Abdi is also thankful to the Iran Nanotechnology Initiative Council (INIC) for their partial support on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhamid Alizadeh.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.93 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Abdi, G. & Khodaei, M.M. Colorimetric and visual detection of silver(I) using gold nanoparticles modified with furfuryl alcohol. Microchim Acta 183, 1995–2003 (2016). https://doi.org/10.1007/s00604-016-1830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1830-7

Keywords

Navigation