Skip to main content
Log in

Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes sensitive and selective homogeneous immunoassays for the liver cancer biomarker alpha-fetoprotein (AFP) in human serum by using single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS). Both competitive and sandwich immunoassay modes were applied, and AFP served as a model analyte. Fluorescent CdSe/ZnS quantum dots (with a 655 nm emission peak) and the fluorophore Alexa Fluor 488 (520 nm emission) were chosen to label the antibodies in the sandwich mode, and the antibody and the antigen in the competitive mode. Under optimized conditions, the sandwich assay has a linear dynamic range that covers the 20 pM to 5.0 nM concentration range. The competitive assay, in turn, extends from 180 pM to 15.0 nM. The respective detection limits are 20 pM and 180 pM. The method was successfully applied to directly determine AFP in (spiked) clinical samples, and results were in good agreement with data obtained via ELISAs.

Homogeneous immunoassay based on single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS) has been used to detect the biomarker alpha-fetoprotein in human sera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747

    Article  CAS  Google Scholar 

  2. Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886

    Article  CAS  Google Scholar 

  3. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34(5):361–368

    Article  Google Scholar 

  4. Zhou X, Tang Y, Xing D (2011) One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy. Anal Chem 83(8):2906–2912

    Article  CAS  Google Scholar 

  5. Ohrt T, Mutze J, Staroske W, Weinmann L, Hock J, Crell K, Meister G, Schwille P (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36(20):6439–6449

    Article  CAS  Google Scholar 

  6. Ly S, Altman R, Petrlova J, Lin Y, Hilt S, Huser T, Laurence TA, Voss JC (2013) Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy. J Biol Chem 288(17):11628–11635

    Article  CAS  Google Scholar 

  7. Triffo SB, Huang HH, Smith AW, Chou ET, Groves JT (2012) Monitoring lipid anchor organization in cell membranes by PIE-FCCS. J Am Chem Soc 134(26):10833–10842

    Article  CAS  Google Scholar 

  8. Miller AE, Hollars CW, Lane SM, Laurence TA (2009) Fluorescence cross-correlation spectroscopy as a universal method for protein detection with low false positives. Anal Chem 81(14):5614–5622

    Article  CAS  Google Scholar 

  9. Fujii F, Horiuchi M, Ueno M, Sakata H, Nagao I, Tamura M, Kinjo M (2007) Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 370(2):131–141

    Article  CAS  Google Scholar 

  10. Schaeffel D, Staff RH, Butt H-J, Landfester K, Crespy D, Koynov K (2012) Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation. Nano Lett 12(11):6012–6017

    Article  CAS  Google Scholar 

  11. Guldbrand S, Kirejev V, Simonsson C, Goksör M, Smedh M, Ericson MB (2012) Two-photon fluorescence correlation spectroscopy as a tool for measuring molecular diffusion within human skin. Eur J Pharm Biopharm 84(2):430–436

    Article  Google Scholar 

  12. Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5(4):549–551

    Article  CAS  Google Scholar 

  13. Fujii F, Kinjo M (2007) Detection of antigen protein by using fluorescence cross-correlation spectroscopy and quantum-dot-labeled antibodies. Chembiochem 8(18):2199–2203

    Article  CAS  Google Scholar 

  14. Liu P, Sudhaharan T, Koh R, Hwang L, Ahmed S, Maruyama I, Wohland T (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698

    Article  CAS  Google Scholar 

  15. Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24(5):577–581. doi:10.1038/nbt1207

    Article  CAS  Google Scholar 

  16. Carmel R (2011) Biomarkers of cobalamin (vitamin B-12) status in the epidemiologic setting: a critical overview of context, applications, and performance characteristics of cobalamin, methylmalonic acid, and holotranscobalamin II. Am J Clin Nutr 94(1):348S–358S

    Article  CAS  Google Scholar 

  17. Trnkova L, Krizkova S, Adam V, Hubalek J, Kizek R (2011) Immobilization of metallothionein to carbon paste electrode surface via anti-MT antibodies and its use for biosensing of silver. Biosens Bioelectron 26(5):2201–2207

    Article  CAS  Google Scholar 

  18. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53(5):1309–1316

    Article  CAS  Google Scholar 

  19. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855

    Article  CAS  Google Scholar 

  20. Huang X, Ren J (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. TrAC Trends Anal Chem 40:77–89

    Article  CAS  Google Scholar 

  21. Kreisig T, Hoffmann R, Zuchner T (2011) Homogeneous fluorescence-based immunoassay detects antigens within 90 seconds. Anal Chem 83(11):4281–4287

    Article  CAS  Google Scholar 

  22. Sha MY, Xu H, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214–17215

    Article  CAS  Google Scholar 

  23. Fan H, Xu Y, Chang Z, Xing R, Wang Q, He P, Fang Y (2011) A non-immobilizing electrochemical DNA sensing strategy with homogenous hybridization based on the host–guest recognition technique. Biosens Bioelectron 26(5):2655–2659

    Article  CAS  Google Scholar 

  24. Li Z, Dong C, Tang L, Zhu X, Chen H, Ren J (2011) Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Luminescence 26(6):439–448

    Article  Google Scholar 

  25. Wang J, Huang X, Zan F, Guo C, Cao C, Ren J (2012) Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy. Electrophoresis 33(13):1987–1995

    Article  CAS  Google Scholar 

  26. Wang J, Huang X, Ruan L, Lan T, Ren J (2013) Size exclusion chromatography as a universal method for the purification of quantum dots bioconjugates. Electrophoresis 34(12):1764–1771

    Article  CAS  Google Scholar 

  27. Saito K, Wada I, Tamura M, Kinjo M (2004) Direct detection of caspase-3 activation in single live cells by cross-correlation analysis. Biochem Biophys Res Commun 324(2):849–854

    Article  CAS  Google Scholar 

  28. Kettling U, Koltermann A, Schwille P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95(4):1416–1420

    Article  CAS  Google Scholar 

  29. Wolfbeis OS, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215

    Article  CAS  Google Scholar 

  30. Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with Azure A or ferrocenecarboxylic acid. Microchim Acta 182(15–16):2435–2442

    Article  CAS  Google Scholar 

  31. Xu R, Jiang Y, Xia L, Zhang T, Xu L, Zhang S, Liu D, Song H (2015) A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 74:411–417

    Article  CAS  Google Scholar 

  32. Lu Y, Huang X, Ren J (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180(7–8):635–642

    Article  CAS  Google Scholar 

  33. Chen MJ, Wu YS, Lin GF, Hou JY, Li M, Liu TC (2012) Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein. Anal Chim Acta 741:100–105

    Article  CAS  Google Scholar 

  34. Lan T, Dong C, Huang X, Ren J (2013) A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS). Talanta 116:501–507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSFC (Grants 21075081, 20905048, 21135004 and 21327004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyi Huang or Jicun Ren.

Electronic supplementary material

ESM 1

(DOC 3.35 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, H., Huang, X. et al. Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels. Microchim Acta 183, 749–755 (2016). https://doi.org/10.1007/s00604-015-1694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1694-2

Keywords

Navigation