Skip to main content
Log in

Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a method for the determination of thrombin that is based on the use of gold nanoparticles (AuNPs) functionalized with an aptamer labeled with a horseradish peroxidase mimick. The assay is based on (a) the high affinity between aptamer and thrombin, and (b) on the finding that AuNPs display HRP-like properties in catalyzing the oxidation of 3,3,5,5-tetramethylbenzidine to give a blue reaction product with an absorption maximum at 652 nm. The limit of detection for thrombin is as low as 0.02 pM, and the analytical range extends from 0.1 pM to 0.1 μM thrombin. The aptamer-based assay was successfully applied to the quantitation of thrombin in spiked human serum. This method is simple, inexpensive and highly sensitive.

A colorimetric method is described for determination of thrombin. It is exploiting the catalytic activity of gold nanoparticles modified with a peroxidase mimic and an aptamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stubbs MT, Bode W (1993) A player of many parts: the spotlight falls on thrombin’s structure. Thromb Res 69:1–58

    Article  CAS  Google Scholar 

  2. Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466–1473

    Article  CAS  Google Scholar 

  3. Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD (1995) Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci 15:5389–5401

    CAS  Google Scholar 

  4. Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G (2000) Proc Natl Acad Sci U S A 97(2000):2264

    Article  CAS  Google Scholar 

  5. Wei H, Li BL, Li J, Wang E, Dong SJ (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Article  CAS  Google Scholar 

  6. Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    Article  CAS  Google Scholar 

  7. Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, Fang Y (2007) Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta 598:242–248

    Article  CAS  Google Scholar 

  8. Xie S, Yuan R, Chai Y, Bai L, Yuan Y, Wang Y (2012) Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue-graphene composites and gold nanoparticles. Talanta 98:7–13

    Article  CAS  Google Scholar 

  9. Wang YY, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793

    Article  CAS  Google Scholar 

  10. Wang WJ, Chen CL, Qian MX, Zhao XS (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373:213–219

    Article  CAS  Google Scholar 

  11. Levy M, Cater SF, Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6:2163–2166

    Article  CAS  Google Scholar 

  12. Xu ZC, Huang XY, Dong CQ, Ren JC (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  13. Lin ZH, Pan D, Hu TY, Liu ZP, Su XG (2015) A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182:1933–1939

    Article  CAS  Google Scholar 

  14. Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417

    Article  CAS  Google Scholar 

  15. Cho H, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JBH (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8:4386–4390

    Article  CAS  Google Scholar 

  16. Sun AL, Jia FC, Zhang YF, Wang XN (2015) Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta 182:1169–1175

    Article  CAS  Google Scholar 

  17. Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  CAS  Google Scholar 

  18. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  19. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  20. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  Google Scholar 

  21. Jellinek D, Lynott CK, Rifkin DB, Janjic N (1993) High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc Natl Acad Sci U S A 90:11227–11231

    Article  CAS  Google Scholar 

  22. Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1423–1428

    Article  CAS  Google Scholar 

  23. Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18:1293–1297

    Article  CAS  Google Scholar 

  24. McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  CAS  Google Scholar 

  25. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320

    Article  CAS  Google Scholar 

  26. Li N, Wang W, Tian D, Cui H (2009) pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence. Chem Commun 12:1520–1522

    Article  CAS  Google Scholar 

  27. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  28. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025

    Article  CAS  Google Scholar 

  29. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  CAS  Google Scholar 

  30. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  31. Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury (II) ions in aqueous solution. Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  32. Marquez LA, Dunford HB (1997) Structural requirements for the intracellular subunit polymerization of the complement inhibitor C4b-binding protein. Biochemistry 36:9349–9357

    Article  CAS  Google Scholar 

  33. Shuman MA, Majerus PW (1976) The measurement of thrombin in clotting blood by radioimmunoassay. J Clin Invest 58:1249–1258

    Article  CAS  Google Scholar 

  34. Daniel C, Melaine F, Roupioz Y, Livache T, Buhot A (2013) Real time monitoring of thrombin interactions with its aptamers: insights into the sandwich complex formation. Biosens Bioelectron 40:186–192

    Article  CAS  Google Scholar 

  35. Wang X, Zhao Q (2012) A fluorescent sandwich assay for thrombin using aptamer modified magnetic beads and quantum dots. Microchim Acta 178:349–355

    Article  CAS  Google Scholar 

  36. Shangguan L, Zhu W, Xue Y, Liu S (2015) Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites. Biosens Bioelectron 64:611–617

    Article  CAS  Google Scholar 

  37. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 55:231–236

    Article  CAS  Google Scholar 

  38. Bai YF, Feng F, Zhao L, Wang CY, Wang HY, Tian MZ, Qin J, Duan YL, He XX (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface Plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron 47:265–270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the financial support of the Doctoral Program of Higher Education of China (1399020162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, L. Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183, 485–490 (2016). https://doi.org/10.1007/s00604-015-1674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1674-6

Keywords

Navigation