Skip to main content
Log in

Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an efficient method for the production carboxy-modified graphene (carboxy-GR), and its application to a highly sensitive immunoassay for the livestock feed additive clenbuterol. Octadecanoic acid is shown to self-assemble on carboxy-GR via intermolecular interaction. Goat anti-mouse IgG was conjugated to 1-octadecanethiol-modified carboxy-GR and then deposited by self-assembly on a C18-modified gold surface. The resulting sensor surface was used to quantify clenbuterol by both surface plasmon resonance and electrochemical impedance spectroscopy. The assay works in the 0.01 ng∙mL−1 to 10 ng∙mL−1 concentration range and the lower detection limit is 6.57 pg∙mL−1. It is concluded that this fairly simple method can be extended to immunoassays for other food additives.

Principle of sensor system and immunoassay. (i) Binding of ACG–IgG with the alkyl chain of 1-octadecanethiol through intermolecular force onto the gold substrate; (ii) absorbance of AbCLB onto the surface of ACG-IgG; and (iii) detection of CLB using an immunoassay based on AbCLB–ACG–IgG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li F, Feng Y, Zhao C, Li P, Tang B (2012) A sensitive graphene oxide–DNA based sensing platform for fluorescence “turn-on” detection of bleomycin. Chem Commun 48:127–129

    Article  CAS  Google Scholar 

  2. Martinez-Navarro JF (1990) Food poisoning related to consumption of illicit β-agonist in liver. Lancer 336:1311

    Article  CAS  Google Scholar 

  3. Pulce C, Lamaison D, Keck G, Bostvironnoisn C, Nicolas J, Descotes J (1991) Collective human food poisonings byclenbuterol residues in veal liver. Vet Hum Toxicol 33:480–481

    CAS  Google Scholar 

  4. Blanca J, Muñoz P, Morgado M, Méndez N, Aranda A, Reuvers T, Hooghuis H (2005) Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry. Anal Chim Acta 529:199–205

    Article  CAS  Google Scholar 

  5. He L, Su Y, Zeng Z, Liu Y, Huang X (2007) Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry. Anim Feed Sci Tech 132:316–323

    Article  CAS  Google Scholar 

  6. Posyniak A, Zmudzki J, Niedzielska J (2003) Screening procedures for clenbuterol residue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography. Anal Chim Acta 483:61–67

    Article  CAS  Google Scholar 

  7. Chen Y, Wang W, Duan J, Chen H (2005) Separation and determination of clenbuterol, cimaterol and salbutamol by capillary electrophoresis with amperometric detection. Electroanal 17:706–712

    Article  CAS  Google Scholar 

  8. Moane S, Smyth MR, O’Keeffe M (1996) Differential-pulse voltammetric determination of clenbuterol in bovine urine using a Nafion-modified carbon paste electrode. Analyst 121:779–784

    Article  CAS  Google Scholar 

  9. Johansson MA, Hellenas K (2003) Immunobiosensor analysis-of clenbuterol in bovine hair. Food Agric Immunol 15:197–205

    Article  CAS  Google Scholar 

  10. Lu X, Zheng H, Li XQ, Yuan XX, Li H, Deng LG, Zhang H, Wang WZ, Yang GS, Meng M, Xi RM, Aboul–Enein HY (2012) Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay. Food Chem 130:1061–1065

    Article  CAS  Google Scholar 

  11. Carbonaro A, Sohn LL (2005) A resistive-pulse sensor chip for multianalyte immunoassays. Lab Chip 5:1155–1160

    Article  CAS  Google Scholar 

  12. Pattnaik P (2005) Surface plasmon resonance. Appl Biochem Biotech 126:79–92

    Article  CAS  Google Scholar 

  13. Shelver WL, Smith DJ (2003) Determination of ractopamine in cattle and sheep urine samples using an optical biosensor analysis: comparative study with HPLC and ELISA. J Agric Food Chem 51:3715–3721

    Article  CAS  Google Scholar 

  14. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  15. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  16. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  17. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem 121:4879–4881

    Article  Google Scholar 

  18. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  19. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  20. Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322

    Article  CAS  Google Scholar 

  21. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  22. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  Google Scholar 

  23. Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48:4323–4329

    Article  CAS  Google Scholar 

  24. Bai J, Lai Y, Jiang D, Zeng Y, Xian Y, Xiao F, Zhang N, Hou J, Jin L (2012) Ultrasensitive electrochemical immunoassay based on graphene oxide–Ag composites for rapid determination of clenbuterol. Analyst 137:4349–4355

    Article  CAS  Google Scholar 

  25. Zhang B, Cui Y, Chen H, Liu B, Chen G, Tang D (2011) A new electrochemical biosensor for determination of hydrogen peroxide in food based on well-dispersive gold nanoparticles on graphene oxide. Electroanalysis 23:1821–1829

    Article  CAS  Google Scholar 

  26. Xie Y, Li Y, Niu L, Wang H, Qian H, Yao W (2012) A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta 100:32–37

    Article  CAS  Google Scholar 

  27. Lai Y, Bai J, Shi X, Zeng Y, Xian Y, Hou J, Jin L (2013) Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy. Talanta 107:176–182

    Article  CAS  Google Scholar 

  28. Chen Q, Yan HJ, Yan CJ, Pan GB, Wan LJ, Wen GY, Zhang DQ (2008) STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface. Surf Sci 602:1256–1266

    Article  CAS  Google Scholar 

  29. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  30. Chen Q, Yan H, Yan C, Pan G, Wan L, Wen G, Zhang D (2008) STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface. Surf Sci 602:1256–1266

    Article  CAS  Google Scholar 

  31. Claypool CL, Faglioni F, Goddard WA, Gray HB, Lewis NS, Marcus RA (1997) Source of image contrast in STM images of functionalized alkanes on graphite: a systematic functional group approach. J Phys Chem B 101:5978–5995

    Article  CAS  Google Scholar 

  32. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 4:1558–1565

    Article  Google Scholar 

  33. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131–136

    Article  CAS  Google Scholar 

  34. Mi Q, Wang ZW, Chai CY, Zhang J, Zhao B, Chen CY (2011) Multilayer structured immunosensor based on a glassy carbon electrode modified with multi-wall carbon nanotubes, polythionine, and gold nanoparticles. Microchim Acta 173:459–467

    Article  CAS  Google Scholar 

  35. Juan C, Igualada C, Moragues F, León N, Manes J (2010) Development and validation of a liquid chromatography tandem mass spectrometry method for the analysis of β-agonists in animal feed and drinking water. J Chromatogr A 1217:6061–6068

    Article  CAS  Google Scholar 

  36. He P, Wang Z, Zhang L, Yang W (2009) Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol. Food Chem 112:707–714

    Article  CAS  Google Scholar 

  37. Liu G, Chen H, Peng H, Song S, Gao J, Lu J, Ding M, Li L, Ren S, Zou Z, Fan C (2011) A carbon nanotube-based high-sensitivity electrochemical immunosensor forrapid and portable detection of clenbuterol. Biosens Bioelectron 28:308–313

    Article  CAS  Google Scholar 

  38. Wang W, Xiang S, Xie S, Xiang B (2012) An adaptive single-well stochastic resonance algorithm applied to trace analysis of clenbuterol in human urine. Molecules 17:1929–1938

    Article  CAS  Google Scholar 

  39. Zhou H, Zhang Z, He D, Hu Y, Huang Y, Chen D (2004) Flow chemiluminescence sensor for determination of clenbuterol based on molecularly imprinted polymer. Anal Chim Acta 523:237–242

    Article  CAS  Google Scholar 

  40. Zhu G, Hu Y, Gao J, Zhong L (2011) Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal Chim Acta 697:61–66

    Article  CAS  Google Scholar 

  41. Liu M, Ning B, Qu L, Peng Y, Dong J, Gao N, Liu L, Gao Z (2012) Development of indirect competitive immunoassay for highly sensitive determination of ractopamine in pork liver samples based on surface plasmon resonance sensor. Sensors Actuators B 161:124–130

    Article  CAS  Google Scholar 

  42. Li Z, Wang Y, Kong W, Wang Z, Wang L, Fu Z (2012) Ultrasensitive detection of trace amount of clenbuterol residue in swine urine utilizing an electrochemiluminescent immunosensor. Sensors Actuators B 174:355–358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for the National Natural Science Foundation of China (NSFC Account No. 51173172 and 21104070) and the Science and Technology Opening Cooperation Project of Henan Province (Account No. 132106000076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhong Zhang or Zhihong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Zhang, Y., Zhang, S. et al. Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182, 855–862 (2015). https://doi.org/10.1007/s00604-014-1399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1399-y

Keywords

Navigation