Skip to main content
Log in

Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a platform to detect DNA damage induced by perfluorooctanoic acid (PFOA) by measuring the electrochemiluminescence (ECL) of a layer-by-layer electrostatic assembly. Gold nanoparticles were electrodeposited on a glassy carbon electrode (GCE) and then drop coated with calf thymus DNA. The surface of the GCE was then modified by sequential drop coating with polyethyleneimine and CdSe quantum dots (QDs). The electrode surface was characterized by atomic force microscopy and electrochemical impedance spectroscopy. DNA damage was determined by measuring the ECL of the QDs, which decreases when exposed to PFOA. This is because DNA damage decreases the distance between the QDs and gold nanoparticles. Eventually, this leads to the energy transfer of ECL. The process is highly sensitive to distance. ECL intensity is logarithmically related to the concentration of PFOA in the range from 10 μmol L−1 to 10 pmol L−1, and the detection limit is 10−12 mol L−1 (at an S/N ratio of 3). This ECL-based sensor represents a powerful tool for detecting PFOA and for fabricating in vitro gene vector platforms to study DNA damage.

We fabricated an in vitro gene vector platform that assesses DNA damage by using a distance-dependent ECL sensor. This sensor is highly sensitive for determining DNA damage caused by PFOA and is suited to systems containing protons, as PEI needs to be protonated to release DNA. This platform presents a new approach for in vitro gene therapy research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zou GZ, Ju HX (2004) Electrogenerated chemiluminescence from a cdse nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871–6876

    Article  CAS  Google Scholar 

  2. Wang XF, Zhou Y, Xu JJ, Chen HY (2009) Signal-on electrochemiluminescence biosensors based on cds–carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv Funct Mater 19:1444–1450

    Article  CAS  Google Scholar 

  3. Miao WJ, Bard AJ (2004) Electrogenerated chemiluminescence.77.dna hybridization detection at high amplification with [ru(bpy)3]2+-containing microspheres. Anal Chem 76:5379–5386

    Article  CAS  Google Scholar 

  4. Liu T, Chen X,Hong CY, Xu XP, Yang HH, Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures, Microchim Acta, DOI:10.1007/s00604-013-1113-5

  5. Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  6. Yin YD, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  CAS  Google Scholar 

  7. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  8. Myung N, Ding ZF, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  9. Cheng Y, Lei JP, Chen YL, Ju HX (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  Google Scholar 

  10. Jie GF, Zhang JJ, Wang DC, Cheng C, Chen HY, Zhu JJ (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  11. Jiang H, Ju HX (2007) Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem 79:6690–6696

    Article  CAS  Google Scholar 

  12. Li XY, Wang RY, Zhang XL (2011) Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantum dots as labels. Microchim Acta 172:285–290

    Article  CAS  Google Scholar 

  13. Liu F, Deng WP, Zhang Y, Ge SG, Yu JH, Yan M (2014) Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporous PtFe nanoparticles, and magnetic graphene nanosheets. Microchim Acta 181:213–222

    Article  CAS  Google Scholar 

  14. Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 8:905–907

    Article  Google Scholar 

  15. Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY (2011) Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem 83:4004–4011

    Article  CAS  Google Scholar 

  16. Kea Y, Kailasaa SK, Wu HF, Chen ZY (2010) High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta 83:178–184

    Article  Google Scholar 

  17. Kailasa SK, Wu HF (2011) Semiconductor cadmium sulphide nanoparticles as matrices for peptides and as co-matrices for the analysis of large proteins in matrix-assisted laser desorption/ionization reflectron and linear time-of-flight mass spectrometry rapid commun. Mass Spectrom 25:271–280

    CAS  Google Scholar 

  18. Kailasaa SK, Wu HF (2012) Functionalized quantum dots with dopamine dithiocarbamate as the matrix for the quantification of efavirenz in human plasma and as affinity probes for rapid identification of microwave tryptic digested proteins in MALDI-TOF-MS. J Proteome 75:2924–2933

    Article  Google Scholar 

  19. Shoeib M, Harner T, Webster GM, Lee SC (2011) Indoor sources of poly- and perfluorinated compounds (PFCS) in vancouver, Canada: implications for human exposure. Environ Sci Technol 45:7999–8005

    Article  CAS  Google Scholar 

  20. Houde M, De Silva AO, Muir DC, Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45:7962–7973

    Article  CAS  Google Scholar 

  21. Giesy JP, Hilscherova K, Jones PD, Kannan K, Machala M (2002) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Pollut Bull 45:3–16

    Article  CAS  Google Scholar 

  22. Kannan K, Choi JW, Iseki N, Senthilkumar K, Kim DH, Masunaga S, Giesy JP (2002) Concentrations of perfluorinated acids in livers of birds from Japan and Korea. Chemosphere 49:225–231

    Article  CAS  Google Scholar 

  23. Fromme H, Midasch O, Twardella D, Angerer J, Boehmer S, Liebl B (2007) Occurrence of perfluorinated substances in an adult German population in southern Bavaria. Int Arch Occup Environ Health 80:313–319

    Article  CAS  Google Scholar 

  24. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40:3463–3473

    Article  CAS  Google Scholar 

  25. Dong HF, Ding L, Yan F, Ji HX, Ju HX (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875–3882

    Article  CAS  Google Scholar 

  26. Rogach AL, Kornowski A, Gao MY, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized cdse nanocrystals. J Phys Chem B 103:3065–3069

    Article  CAS  Google Scholar 

  27. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  28. Lu LP, Wang SQ, Lin XQ (2004) Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal Chim Acta 519:161–166

    Article  CAS  Google Scholar 

  29. Jie GF, Liu B, Pan HC, Zhu JJ, Chen HY (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79:5574–5581

    Article  CAS  Google Scholar 

  30. Lu LP, Xu LH, Kang TF, Cheng SY (2012) Investigation of DNA damage treated with perfluorooctane sulfonate (PFOS) on ZrO2/DDAB active nano-order film. Biosens Bioelectron 35:180–185

    Article  CAS  Google Scholar 

  31. Wang T, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375

    Article  CAS  Google Scholar 

  32. Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34

    Article  CAS  Google Scholar 

  33. Mugweru A, Rusling JF (2002) Square wave voltammetric detection of chemical DNA damage with catalytic poly(4-vinylpyridine)-ru(bpy)22+ films. Anal Chem 74:4044–4049

    Article  CAS  Google Scholar 

  34. Zhang BT, Guo LH, Greenberg MM (2012) Quantification of 8-OxodGuo lesions in double-stranded DNA using a photoelectrochemical DNA sensor. Anal Chem 84:6048–6053

    Article  CAS  Google Scholar 

  35. Ensafin AA, Amini M, Rezaei B (2014) Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor. Biosens Bioelectron 53:43–50

    Article  Google Scholar 

  36. Jia SP, Liang MM, Guo LH (2008) Photoelectrochemical detection of oxidative dna damage induced by fenton reaction with low concentration and DNA-associated Fe2+. J Phys Chem B 112:4461–4464

    Article  CAS  Google Scholar 

  37. Nowicka AM, Krasnodebska-Ostrega B, Wrzosek B, Jastrzebska M, Mackiewicz SM, Stojek MZ (2014) Detection of oxidative damage of synthetic oligonucleotides caused by thallium(III) complexes. Electroanalysis 26:340–350

    Article  CAS  Google Scholar 

  38. Xu HB, Ye RF, Yang SY, Li R, Yang X (2014) Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples. Chin Chem Lett 25:29–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Foundation of National Natural Science Foundation of China (No.21005005), Basic Science Foundation of BJUT (No. X4005011201301), Beijing Nova program (No.2010B009) and the Program for New Century Excellent Talents in University (NCET-12-0603), Further Exploration of Talented Personnel in Beijing - Promising Key Projects (No. PHR20110818) and Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (No. KZ201310005001, KZ201110005006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Wu, J., Li, M. et al. Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles. Microchim Acta 182, 233–239 (2015). https://doi.org/10.1007/s00604-014-1322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1322-6

Keywords

Navigation