Skip to main content

Advertisement

Log in

Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This study introduces a new surface-renewable electrode based on a sol–gel derived graphene ceramic composite. The electrode was prepared by dispersing graphene nanosheets into a solution of the sol–gel precursors containing methyl triethoxysilane in methanol and hydrochloric acid. During hydrolysis of methyl triethoxysilane, the graphene nanosheets are trapped in the gel. After moulding and drying the composite, it can be used as a surface-renewable electrode to which we refer as a graphene ceramic composite electrode (GCCE). Cyclic voltammograms of the hexacyanoferrate(II/III) model redox system at the GCCE were compared to those obtained with a conventional carbon ceramic electrode and showed a highly improved electron transfer rate at the GCCE. The electrocatalytic oxidation of ascorbic acid as a model analyte was then studied at working potential of 50 mV and over the 3–84 μM concentration range. It revealed a sensitivity of 6.06 μA μM−1 cm−2 and a detection limit of 0.82 μM. The GCCE was successfully applied to the determination of ascorbic acid in orange juice and urine samples. Advantages such as good mechanical and chemical stability, ease of fabrication, and reproducible preparation make the GCCE a potentially useful and widely applicable renewable electrode for use in routine analysis.

(Left) FESEM image and photograph of the graphene ceramic composite electrode (GCCE); (right) the cyclic voltammogram of the renewable GCCE in 5 mM K3[Fe(CN)6] solution containing 0.1 M KNO3 at scan rate of 100 mV s−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2010) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  Google Scholar 

  3. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  4. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648. doi:10.1016/j.bios.2011.05.039

    Article  CAS  Google Scholar 

  5. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. doi:10.1021/cr900070d

    Article  CAS  Google Scholar 

  6. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1):1–19. doi:10.1007/s00604-011-0639-7

    Article  CAS  Google Scholar 

  7. Briza PL, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1):1–16. doi:10.1007/s00604-012-0871-9

    Google Scholar 

  8. Li F, Li J, Feng Y, Yang L, Du Z (2011) Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic. Sensors Actuators B 157(1):110–114. doi:10.1016/j.snb.2011.03.033

    Article  CAS  Google Scholar 

  9. Parvin MH (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369. doi:10.1016/j.elecom.2011.01.027

    Article  CAS  Google Scholar 

  10. Tsionsky M, Gun G, Glezer V, Lev O (1994) Sol–gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Anal Chem 66(10):1747–1753. doi:10.1021/ac00082a024

    Article  CAS  Google Scholar 

  11. Salimi A, Roushani M (2005) Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochem Commun 7(9):879–887. doi:10.1016/j.elecom.2005.05.009

    Article  CAS  Google Scholar 

  12. Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ (2004) An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochemistry 65(1):33–39. doi:10.1016/j.bioelechem.2004.06.002

    Article  CAS  Google Scholar 

  13. Li Y, Kuan CF, Chen CH, Kuan HC, Yip MC, Chiu SL, Chiang CL (2012) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134(2–3):677–685. doi:10.1016/j.matchemphys.2012.03.050

    Article  CAS  Google Scholar 

  14. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857. doi:10.1021/ja800745y

    Article  CAS  Google Scholar 

  15. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  16. Razmi H, Mohammad-Rezaei R (2011) Preparation of tungsten oxide nanoporous thin film at carbon ceramic electrode for electrocatalytic applications. Electrochim Acta 56(20):7220–7223. doi:10.1016/j.electacta.2011.04.018

    Article  CAS  Google Scholar 

  17. Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401. doi:10.1021/cm902876u

    Article  CAS  Google Scholar 

  18. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13(2):133–137. doi:10.1016/j.elecom.2010.11.033

    Article  CAS  Google Scholar 

  19. Henstridge MC, Laborda E, Dickinson EJF, Compton RG (2012) Redox systems obeying Marcus-Hush-Chidsey electrode kinetics do not obey the Randles-Sevcik equation for linear sweep voltammetry. J Electroanal Chem 664:73–79

    Article  CAS  Google Scholar 

  20. Gai P, Zhang H, Zhang Y, Liu W, Zhu G, Zhang X, Chen J (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B 1(21):2742–2749. doi:10.1039/C3TB20215A

    Article  CAS  Google Scholar 

  21. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26(8):3450–3455. doi:10.1016/j.bios.2011.01.023

    Article  CAS  Google Scholar 

  22. Hutton EA, Pauliukaite R, Hocevar SB, Ogorevc B, Smyth MR (2010) Amperometric microsensor for direct probing of ascorbic acid in human gastric juice. Anal Chim Acta 678(2):176–182. doi:10.1016/j.aca.2010.08.027

    Article  CAS  Google Scholar 

  23. Xi L, Ren D, Luo J, Zhu Y (2010) Electrochemical analysis of ascorbic acid using copper nanoparticles/Polyaniline modified glassy carbon electrode. J Electroanal Chem 650(1):127–134. doi:10.1016/j.jelechem.2010.08.014

    Article  CAS  Google Scholar 

  24. Weng CJ, Chen YL, Chien CM, Hsu SC, Jhuo YS, Yeh JM, Dai CF (2013) Preparation of gold decorated SiO2@polyaniline core-shell microspheres and application as a sensor for ascorbic acid. Electrochim Acta 95:162–169. doi:10.1016/j.electacta.2013.01.150

    Article  CAS  Google Scholar 

  25. Wu GH, Wu YF, Liu XW, Rong MC, Chen XM, Chen X (2012) An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Anal Chim Acta 745:33–37. doi:10.1016/j.aca.2012.07.034

    Article  CAS  Google Scholar 

  26. Yang L, Liu S, Zhang Q, Li F (2012) Simultaneous electrochemical determination of dopamine and ascorbic acid, using AuNPs@polyaniline core-shell nanocomposites modified electrode. Talanta 89:136–141. doi:10.1016/j.talanta.2011.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Council of Azarbaijan Shahid Madani University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Razmi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

XRD patterns of graphene oxide (A) and hydrothermally reduced graphene oxide (B) (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Rezaei, R., Razmi, H. & Jabbari, M. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Microchim Acta 181, 1879–1885 (2014). https://doi.org/10.1007/s00604-014-1238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1238-1

Keywords

Navigation