Skip to main content
Log in

Analytical Modeling of Elastic Moduli Dispersion and Poromechanical Responses of a Dual-Porosity Dual-Permeability Porous Cylinder Under Dynamic Forced Deformation Test

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The elastic moduli dispersion of materials is a topic of great interest in many engineering practices. Such dispersion is regularly measured on laboratory-preferred cylindrical samples of various natures, from solid dry to single-porosity and dual-porosity dual-permeability fluid-saturated materials. Analytical modeling of these laboratory tests is desired as it is effective and time-efficient in the interpretation of the experimental results and the characterization of the poromechanical properties of the material. To this end, for the first time, this paper presents analytical modeling of the elastic moduli dispersion and the poromechanical behaviors of a dual-porosity dual-permeability fluid-saturated cylinder under a dynamic forced deformation test. Our dual-porosity dual-permeability poroelastodynamics solution can be easily reduced to the elastodynamics and the single-porosity poroelastodynamics ones. We demonstrate the capabilities of our analytical solution by modeling the dynamic elastic moduli and poromechanical responses of a naturally fractured rock sample. Our results show that spatial distributions of poromechanical quantities, such as pore pressure and strain, are mostly uniform at low frequencies and become increasingly nonuniform at high frequencies. Additionally, the dynamic Young’s modulus and Poisson’s ratio are highly dependent on Biot’s and Skempton’s coefficients, the sample’s dimension, and the loading frequency. The dispersion trends of these dynamic elastic moduli vary as the loading frequency approaches the material's resonant and anti-resonant frequencies. Finally, we use our analytical solution to successfully match laboratory data from dynamic forced deformation tests on three clastic sediment rock samples from the North Sea and a shale sample from Mont Terri.

Highlights

  • The first analytical poroelastodynamics solution for a dual-porosity dual-permeability fluid-saturated porous cylinder.

  • Comprehensively interpretation of the poromechanical responses and the mechanisms of the dispersion.

  • Excellent matches between the analytical solution with laboratory measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

\({a}_{ij}\) :

Stiffness coefficients

\(B\) :

Skempton’s coefficient

\({B}_{j}\) :

Skempton’s coefficient of the porous medium \(j\)

\(F\) :

Applied force

\(G\) :

Shear modulus

\(h\) :

Height of the rock sample

\({J}_{1}(x)\) :

Bessel function of the first kind of order one

\(k\) :

Permeability

\(K\) :

Bulk modulus

\({K}_{f}\) :

Bulk modulus of the pore fluid

\({K}_{j}\) :

Bulk modulus of the porous medium \(j\)

\({K}_{s}\) :

Bulk modulus of the solid grains

\({p}_{j}\) :

Pore pressure in porous medium \(j\)

\(r\) :

Radial distance

\(R\) :

Radius of the cylindrical rock sample

\(\mathrm{u}\) :

Displacement vector of the solid

\({u}_{i}\) :

Solid displacement in the \(i\)-direction

\({U}_{z0}\) :

Amplitude of the displacement at the bottom surface of the rock

\({\mathrm{v}}_{j}\) :

Volume fraction of porous medium \(j\)

\({v}_{s}\) :

Phase velocity of shear wave

\({v}_{{p}_{j}}\) :

Phase velocity of the \({j}^{th}\) P wave

\({w}_{\mathrm{j}}\) :

Displacement vector of the specific relative fluid to the solid displacement of porous medium \(j\)

\({w}_{1i}\) :

Specific relative matrix pore fluid to solid displacement in the \(i\)-direction

\({w}_{2i}\) :

Specific relative fractures’ pore fluid to solid displacement in the \(i\)-direction

\(\alpha\) :

Biot’s coefficient

\({\alpha }_{j}\) :

Biot’s coefficient of the porous medium \(j\)

\({\overline{\alpha }}_{j}\) :

Effective Biot’s coefficient of the porous medium \(j\)

\({\varphi }_{j}\) :

Porosity of porous medium \(j\)

\({\phi }_{j}\) :

Potential functions

\({\psi }_{j}\) :

Potential vectors

\({\sigma }_{ij}\) :

Components of the stress tensor

\({\kappa }_{jj}\) :

Mobility of porous medium \(j\)

\(\lambda\) :

Lamé parameter

\({\rho }_{f}\) :

Density of the pore fluid

\({\mu }_{0}\) :

Viscosity of the pore fluid

\({\tau }_{j}\) :

Tortuosity of porous medium \(j\)

\(\nu\) :

Poisson’s ratio

\(\omega\) :

Angular frequency

References

  • Abousleiman Y, Hull K, Han Y, Al-Muntasheri G, Hosemann P, Parker S, Howard C (2016) The granular and polymer composite nature of kerogen-rich shale. Acta Geotech 11(3):573–594

    Google Scholar 

  • Aifantis E (1980) On the problem of diffusion in solids. Acta Mech 37(3):265–296

    Google Scholar 

  • Ba J, Carcione J, Nie J (2011) Biot-Rayleigh theory of wave propagation in double-porosity media. J Geophys Res. https://doi.org/10.1029/2010JB008185

    Article  Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina I (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J Appl Math Mech 24(5):1286–1303

    Google Scholar 

  • Berryman JG (2002) Extension of poroelastic analysis to double-porosity materials: new technique in microgeomechanics. J Eng Mech 128(8):840–847

    Google Scholar 

  • Beskos DE, Aifantis EC (1986) On the theory of consolidation with double porosity-II. Int J Eng Sci 24(11):1697–1716

    Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Google Scholar 

  • Biot MA (1962a) Generalized theory of acoustic propagation in porous dissipative media. Jacoust Soc Am 34(9A):1254–1264

    Google Scholar 

  • Biot MA (1962b) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Google Scholar 

  • Boutin C, Royer P (2015) On models of double porosity poroelastic media. Geophys J Int 203(3):1694–1725

    Google Scholar 

  • Boutin C, Venegas R (2016) Assessment of the effective parameters of dual porosity deformable media. Mech Mater 102:26–46

    Google Scholar 

  • Boutin C, Royer P, Auriault J-L (1998) Acoustic absorption of porous surfacing with dual porosity. Int J Solids Struct 35(34–35):4709–4737

    Google Scholar 

  • Boutt DF, Grasselli G, Fredrich JT, Cook BK, Williams JR (2006) Trapping zones: the effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys Res Lett. https://doi.org/10.1029/2006GL027275

    Article  Google Scholar 

  • Burridge R, Vargas C (1979) The fundamental solution in dynamic poroelasticity. Geophys J Int 58(1):61–90

    Google Scholar 

  • Carcione JM, Gurevich B, Cavallini F (2000) A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones. Geophys Prospect 48(3):539–557

    Google Scholar 

  • Chen S, Chen L, Pan E (2007) Three-dimensional time-harmonic Green’s functions of saturated soil under buried loading. Soil Dyn Earthq Eng 27(5):448–462

    Google Scholar 

  • Cheng AH-D (2016) Poroelasticity. Springer International Publishing, Cham

    Google Scholar 

  • Cheng AH-D, Badmus T, Beskos DE (1991) Integral equation for dynamic poroelasticity in frequency domain with BEM solution. J Eng Mech 117(5):1136–1157

    Google Scholar 

  • Choo J, Borja RI (2015) Stabilized mixed finite elements for deformable porous media with double porosity. Comput Methods Appl Mech Eng 293:131–154

    Google Scholar 

  • Choo J, White JA, Borja RI (2016) Hydromechanical modeling of unsaturated flow in double porosity media. Int J Geomech 16(6):D4016002

    Google Scholar 

  • Connizzo BK, Grodzinsky AJ (2017) Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 54:11–18

    Google Scholar 

  • Davis LA, Moss RM, Pepin GP (1992) Direct measurement of the constituent porosities in a dual-porosity matrix. The Log Analyst. 33(02).

  • Ding B, Cheng AH-D, Chen Z (2013) Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition. J Appl Mech 80(6):061021

    Google Scholar 

  • Garg S, Nayfeh AH, Good A (1974) Compressional waves in fluid-saturated elastic porous media. J Appl Phys 45(5):1968–1974

    Google Scholar 

  • Golsanami N, Sun J, Liu Y, Yan W, Lianjun C, Jiang L, Dong H, Zong C, Wang H (2019) Distinguishing fractures from matrix pores based on the practical application of rock physics inversion and NMR data: a case study from an unconventional coal reservoir in China. J Natural Gas Sci Eng 65:145–167

    Google Scholar 

  • Guo J, Rubino JG, Glubokovskikh S, Gurevich B (2017) Effects of fracture intersections on seismic dispersion: theoretical predictions versus numerical simulations. Geophys Prospect 65(5):1264–1276

    Google Scholar 

  • Guzev M, Riabokon E, Turbakov M, Kozhevnikov E, Poplygin V (2020) Modelling of the Dynamic Young’s Modulus of a Sedimentary Rock Subjected to Nonstationary Loading. Energies 13(23):6461

    Google Scholar 

  • Hofmann R (2006) Frequency dependent elastic and anelastic properties of clastic rocks. This is a PhD dissertation from Colorado School of Mines, p 19–58.

  • Jahović I, Zou Y-Q, Adorinni S, Nitschke JR, Marchesan S (2021) Cages meet gels: smart materials with dual porosity. Matter 4(7):2123–2140

    Google Scholar 

  • Kari L (2003) On the dynamic stiffness of preloaded vibration isolators in the audible frequency range: modeling and experiments. J Acoust Soc Am 113(4):1909–1921

    Google Scholar 

  • Keawsawasvong S, Senjuntichai T (2019) Poroelastodynamic fundamental solutions of transversely isotropic half-plane. Comput Geotech 106:52–67

    Google Scholar 

  • Kumar R, Garg N, Miglani A (2003) Elastodynamics of an axisymmetric problem in an anisotropic liquid-saturated porous medium. J Sound Vib 261(4):697–714

    Google Scholar 

  • Liu C (2021a) Dual-porosity dual-permeability poroelastodynamics analytical solutions for mandel’s problem. J Appl Mech. https://doi.org/10.1115/1.4048398

    Article  Google Scholar 

  • Liu C (2021b) Fundamental solutions to the transversely isotropic poroelastodynamics Mandel’s problem. Int J Numer Anal Meth Geomech 45(15):2260–2283

    Google Scholar 

  • Liu C, Phan DT (2021) Poroelastodynamic responses of a dual-porosity dual-permeability material under harmonic loading. Partial Differ Equ Appl Math 4:100074

    Google Scholar 

  • Liu C, Mehrabian A, Abousleiman YN (2017) Poroelastic dual-porosity/dual-permeability after-closure pressure-curves analysis in hydraulic fracturing. SPE J 22(01):198–218

    Google Scholar 

  • Liu H, Maghoul P, Shalaby A (2020) Laboratory-scale characterization of saturated soil samples through ultrasonic techniques. Sci Rep 10(1):1–17

    Google Scholar 

  • Liu Z, Wang Z, Cheng AH, Zhang X (2021) The method of fundamental solutions for the elastic wave scattering in a double-porosity dual-permeability medium. Appl Math Model 97:721–740

    Google Scholar 

  • Long JC, Gilmour P, Witherspoon PA (1985) A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resour Res 21(8):1105–1115

    Google Scholar 

  • Love AEH (2013) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Lozovyi S, Bauer A (2019a) From static to dynamic stiffness of shales: frequency and stress dependence. Rock Mech Rock Eng 52(12):5085–5098

    Google Scholar 

  • Lozovyi S, Bauer A (2019b) Static and dynamic stiffness measurements with Opalinus clay. Geophys Prospect 67(4):997–1019 (Rock Physics: from microstructure to seismic signatures)

    Google Scholar 

  • Mehrabian A (2018) The poroelastic constants of multiple-porosity solids. Int J Eng Sci 132:97–104

    Google Scholar 

  • Mehrabian A, Abousleiman YN (2014) Generalized Biot’s theory and Mandel’s problem of multiple-porosity and multiple-permeability poroelasticity. J Geophys Res 119(4):2745–2763

    Google Scholar 

  • Mehrabian A, Liu C (2021) Mandel’s problem reloaded. J Sound Vib 492:115785

    Google Scholar 

  • Mikhaltsevitch V, Lebedev M, Pervukhina M, Gurevich B (2021) Seismic dispersion and attenuation in Mancos shale–laboratory measurements. Geophys Prospect 69(3):568–585

    Google Scholar 

  • Norris AN (1985) Radiation from a point source and scattering theory in a fluid-saturated porous solid. J Acoust Soc Am 77(6):2012–2023

    Google Scholar 

  • Olny X, Boutin C (2003) Acoustic wave propagation in double porosity media. J Acoust Soc Am 114(1):73–89

    Google Scholar 

  • Ozcan MU, Ocal S, Basdogan C, Dogusoy G, Tokat Y (2011) Characterization of frequency-dependent material properties of human liver and its pathologies using an impact hammer. Med Image Anal 15(1):45–52

    Google Scholar 

  • Pais A, Kausel E (1988) Approximate formulas for dynamic stiffnesses of rigid foundations. Soil Dyn Earthq Eng 7(4):213–227

    Google Scholar 

  • Paul S (1976) On the disturbance produced in a semi-infinite poroelastic medium by a surface load. Pure Appl Geophys 114(4):615–627

    Google Scholar 

  • Pimienta L, Fortin J, Borgomano JV, Guéguen Y (2016) Dispersions and attenuations in a fully saturated sandstone: experimental evidence for fluid flows at different scales. Lead Edge 35(6):495–501

    Google Scholar 

  • Pooladi A, Rahimian M, Pak RY (2017) Poroelastodynamic potential method for transversely isotropic fluid-saturated poroelastic media. Appl Math Model 50:177–199

    Google Scholar 

  • Pride SR, Berryman JG (2003a) Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E 68(3):036603

    Google Scholar 

  • Pride SR, Berryman JG (2003b) Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys Rev E 68(3):036604

    Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NG (1990) Transmission of seismic waves across single natural fractures. J Geophys Res 95(B6):8617–8638

    Google Scholar 

  • Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L (2018) Dual porosity protein-based scaffolds with enhanced cell infiltration and proliferation. Sci Rep 8(1):1–10

    Google Scholar 

  • Ryden N (2011) Resonant frequency testing of cylindrical asphalt samples. Eur J Environ Civ Eng 15(4):587–600

    Google Scholar 

  • Schanz M (2009) Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl Mech Rev 62(3).

  • Slatt RM, Abousleiman Y (2011) Merging sequence stratigraphy and geomechanics for unconventional gas shales. Lead Edge 30(3):274–282

    Google Scholar 

  • Spencer JW Jr (1981) Stress relaxations at low frequencies in fluid-saturated rocks: attenuation and modulus dispersion. J Geophys Res 86(B3):1803–1812

    Google Scholar 

  • Szewczyk D, Holt RM, Bauer A (2018) The impact of saturation on seismic dispersion in shales—laboratory measurements. Geophysics 83(1):MR15–MR34

    Google Scholar 

  • Tsang Y, Witherspoon PA (1983) The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. J Geophys Res 88(B3):2359–2366

    Google Scholar 

  • Vega B, Dutta A, Kovscek AR (2014) CT imaging of low-permeability, dual-porosity systems using high X-ray contrast gas. Transp Porous Media 101(1):81–97

    Google Scholar 

  • Vgenopoulou I, Beskos DE (1992) Dynamics of saturated rocks. IV: column and borehole problems. J Eng Mech 118(9):1795–1813

    Google Scholar 

  • Warren J, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3(03):245–255

    Google Scholar 

  • Wilson R, Aifantis EC (1982) On the theory of consolidation with double porosity. Int J Eng Sci 20(9):1009–1035

    Google Scholar 

  • Winkler K, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6(1):1–4

    Google Scholar 

  • Wu K, Kuhlenkoetter B (2020) Experimental analysis of the dynamic stiffness in industrial robots. Appl Sci 10(23):8332

    Google Scholar 

  • Yuan H, Courteille E, Deblaise D (2015) Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mech Mach Theory 85:64–81

    Google Scholar 

  • Zhang Q (2020) Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks. Comput Geotech 128:103812

    Google Scholar 

  • Zhang JJ, Liu H-H, Boudjatit M (2020) Matrix permeability measurement from fractured unconventional source-rock samples: Method and application. J Contam Hydrol 233:103663

    Google Scholar 

  • Zheng P, Cheng AD (2017) One-dimensional analytical solution for mesoscopic flow induced damping in a double-porosity dual-permeability material. Int J Numer Anal Meth Geomech 41(13):1413–1429

    Google Scholar 

  • Zheng P, Cheng AH-D, Li H (2017) Dynamic Green’s functions and integral equations for a double-porosity dual-permeability poroelastic material. J Appl Mech 84(6):061009

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Younane Abousleiman, Dr. Amin Mehrabian, Dr. Hui-Hai Liu, and Dr. Jinhong Chen for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Definitions of Parameters

$$\begin{array}{c}\left[\begin{array}{c}{a}_{11}\\ {a}_{12}\\ \begin{array}{c}{a}_{13}\\ {a}_{21}\\ \begin{array}{c}{a}_{22}\\ {a}_{23}\end{array}\end{array}\end{array}\right]=\frac{1}{{\overline{M} }_{11}{\overline{M} }_{22}-{\overline{M} }_{12}^{2}}\\ \times \left[\begin{array}{c}{\overline{M} }_{11}{\overline{M} }_{12}\left({\overline{\alpha }}_{1}{\overline{M} }_{12}-{\overline{\alpha }}_{2}{\overline{M} }_{22}\right)\\ {\overline{M} }_{11}{\overline{M} }_{12}^{2}\\ \begin{array}{c}-{\overline{M} }_{11}{\overline{M} }_{12}{\overline{M} }_{22}\\ {\overline{M} }_{12}{\overline{M} }_{22}\left(-{\overline{\alpha }}_{1}{\overline{M} }_{11}+{\overline{\alpha }}_{2}{\overline{M} }_{12}\right)\\ \begin{array}{c}-{\overline{M} }_{11}{\overline{M} }_{12}{\overline{M} }_{22}\\ {\overline{M} }_{12}^{2}{\overline{M} }_{22}\end{array}\end{array}\end{array}\right]\end{array}$$
(38)
$$\begin{array}{c}\left[\begin{array}{c}\frac{1}{{\overline{M} }_{11}}\\ \frac{1}{{\overline{M} }_{12}}\\ \frac{1}{{\overline{M} }_{22}}\end{array}\right]=\left[\begin{array}{c}\frac{1}{{M}_{11}}-\frac{\gamma }{i\omega }\\ \frac{1}{{M}_{12}}+\frac{\gamma }{i\omega }\\ \frac{1}{{M}_{22}}-\frac{\gamma }{i\omega }\end{array}\right]\end{array}$$
(39)
$$\begin{array}{c}\gamma ={\gamma }_{0}\sqrt{1-\frac{i\omega }{{\omega }_{r}}}\end{array}$$
(40)
$$\begin{array}{c}{\rho }_{23}=\frac{{\rho }_{f}}{2}\left[\begin{array}{c}\left(\tau -1\right)\phi -\left({\tau }_{1}-1\right){\mathrm{v}}_{1}{\phi }_{1}\\ -\left({\tau }_{2}-1\right){\mathrm{v}}_{2}{\phi }_{2}\end{array}\right]\end{array}$$
(41)
$$\begin{array}{c}{v}_{s}=\sqrt{\frac{G}{\rho +{\frac{2{b}_{12}-{b}_{11}-{b}_{22}}{{b}_{11}{b}_{22}-{b}_{12}^{2}}\rho }_{f}^{2}}}\end{array}$$
(42)
$$\begin{array}{c}\left[\begin{array}{c}{b}_{11}\\ {b}_{12}\\ {b}_{22}\end{array}\right]=\left[\begin{array}{c}\frac{{\tau }_{1}{\rho }_{f}}{{\mathrm{v}}_{1}{\phi }_{1}}+\frac{i}{\omega {\kappa }_{11}}\\ \frac{{\rho }_{23}}{{\mathrm{v}}_{1}{\mathrm{v}}_{2}{\phi }_{1}{\phi }_{2}}\\ \frac{{\tau }_{2}{\rho }_{f}}{{\mathrm{v}}_{2}{\phi }_{2}}+\frac{i}{\omega {\kappa }_{22}}\end{array}\right]\end{array}$$
(43)
$$\begin{array}{c}M=\left[\begin{array}{ccc}\left(\begin{array}{c}\lambda +2G\\ -{\overline{\alpha }}_{1}{a}_{11}\\ -{\overline{\alpha }}_{2}{a}_{21}\end{array}\right)& \left(\begin{array}{c}-{\overline{\alpha }}_{1}{a}_{12}\\ -{\overline{\alpha }}_{2}{a}_{22}\end{array}\right)& \left(\begin{array}{c}{-\overline{\alpha }}_{1}{a}_{13}\\ -{\overline{\alpha }}_{2}{a}_{23}\end{array}\right)\\ {a}_{11}& {a}_{12}& {a}_{13}\\ {a}_{21}& {a}_{22}& {a}_{23}\end{array}\right]\end{array}$$
(44)
$$\begin{array}{c}N=\left[\begin{array}{ccc}-{\omega }^{2}\rho & -{\omega }^{2}{\rho }_{f}& -{\omega }^{2}{\rho }_{f}\\ {\omega }^{2}{\rho }_{f}& \left(\begin{array}{c}{\omega }^{2}\frac{{\tau }_{1}{\rho }_{f}}{{\mathrm{v}}_{1}{\phi }_{1}}\\ +\frac{i\omega }{{\kappa }_{11}}\end{array}\right)& {\omega }^{2}\frac{{\rho }_{23}}{{\mathrm{v}}_{1}{\mathrm{v}}_{2}{\phi }_{1}{\phi }_{2}}\\ {\omega }^{2}{\rho }_{f}& {\omega }^{2}\frac{{\rho }_{23}}{{\mathrm{v}}_{1}{\mathrm{v}}_{2}{\phi }_{1}{\phi }_{2}}& \left(\begin{array}{c}{\omega }^{2}\frac{{\tau }_{2}{\rho }_{f}}{{\mathrm{v}}_{2}{\phi }_{2}}\\ +\frac{i\omega }{{\kappa }_{22}}\end{array}\right)\end{array}\right]\end{array}$$
(45)

where \(\tau \left(=\phi \frac{{\mathrm{v}}_{2}{\phi }_{1}+\left(3-{\mathrm{v}}_{2}\right){\tau }_{1}}{\left(3-2{\mathrm{v}}_{2}\right){\phi }_{1}+2{\mathrm{v}}_{2}{\tau }_{1}}\right)\) and \(\phi \left(={\mathrm{v}}_{1}{\phi }_{1}+{\mathrm{v}}_{2}{\phi }_{2}\right)\) are the average tortuosity and porosity, respectively, \(\gamma\) is the inter-porosity fluid exchange coefficient, \({\gamma }_{0}\) is the low-frequency limit, \({\omega }_{r}\) is the relaxation frequency.

At high frequencies, the fluid viscosity needs to be multiplied by a viscosity correction factor. For example, Biot’s parallel plates flow model (Biot 1956b; Cheng 2016) can be used to simulate the frequency-dependent viscosity, i.e., \(\mu =-{\mu }_{0}\frac{\sqrt{i}{\kappa }_{u}\mathrm{tan}\sqrt{i}{\kappa }_{u}}{3(1-\mathrm{tan}\sqrt{i}{\kappa }_{u}/\sqrt{i}{\kappa }_{u})}\), where \({\kappa }_{u}={\delta }_{p}\sqrt{\frac{k{\rho }_{f}\omega }{\phi {\mu }_{0}}}\) and \({\delta }_{p}\) is a factor dependent on pore geometry.

Appendix 2

2.1 Exact Expressions of Displacements, Pore Pressures, and Stresses

Substitution of Eqs. (17, 20, 26, 27) into Eqs. (2830) provide the solutions of displacements as follows

$$\begin{array}{c}{u}_{r}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{1m}{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)\mathrm{cos}\frac{n\pi }{h}z\\ -{C}_{m}{n}_{1m}\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)\\ -{\sum }_{n=1}^{\infty }{A}_{n}\frac{n\pi }{h}{J}_{1}\left(r{\xi }_{n}\right)\mathrm{cos}\frac{n\pi }{h}z\end{array}$$
(46)
$$\begin{array}{c}{w}_{1r}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{2m}{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)\mathrm{cos}\frac{n\pi }{h}z\\ -{C}_{m}{n}_{2m}\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)\\ -\frac{{\rho }_{f}\left({b}_{12}-{b}_{22}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}{\sum }_{n=1}^{\infty }{A}_{n}\frac{n\pi }{h}{J}_{1}\left(r{\xi }_{n}\right)\mathrm{cos}\frac{n\pi }{h}z\end{array}$$
(47)
$$\begin{array}{c}{w}_{2r}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{3m}{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)\mathrm{cos}\frac{n\pi }{h}z\\ -{C}_{m}{n}_{3m}\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)\\ -\frac{{\rho }_{f}\left({b}_{12}-{b}_{11}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}{\sum }_{n=1}^{\infty }{A}_{n}\frac{n\pi }{h}{J}_{1}\left(r{\xi }_{n}\right)\mathrm{cos}\frac{n\pi }{h}z\end{array}$$
(48)
$$\begin{array}{c}{u}_{z}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{1m}{J}_{0}\left(r{\eta }_{mn}\right)\frac{n\pi }{h}\mathrm{sin}\frac{n\pi }{h}z\\ +{n}_{1m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}z\\ +{\sum }_{n=1}^{\infty }{A}_{n}\left[\begin{array}{c}\frac{{J}_{1}\left(r{\xi }_{n}\right)}{r}\\ +{\xi }_{n}\frac{{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)}{2}\end{array}\right]\mathrm{sin}\frac{n\pi }{h}z\end{array}$$
(49)
$$\begin{array}{c}{w}_{1z}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{2m}\frac{n\pi }{h}{J}_{0}\left(r{\eta }_{mn}\right)\mathrm{sin}\frac{n\pi }{h}z\\ +{n}_{2m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}z\\ +\frac{{\rho }_{f}\left({b}_{12}-{b}_{22}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}\\ \times {\sum }_{n=1}^{\infty }{A}_{n}\left[\begin{array}{c}\frac{{J}_{1}\left(r{\xi }_{n}\right)}{r}\\ +{\xi }_{n}\frac{{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)}{2}\end{array}\right]\mathrm{sin}\frac{n\pi }{h}z\end{array}$$
(50)
$$\begin{array}{c}{w}_{2z}=-{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{3m}\frac{n\pi }{h}{J}_{0}\left(r{\eta }_{mn}\right)\mathrm{sin}\frac{n\pi }{h}z\\ +{n}_{3m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}z\\ +\frac{{\rho }_{f}\left({b}_{12}-{b}_{11}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}\\ \times {\sum }_{n=1}^{\infty }{A}_{n}\left[\begin{array}{c}\frac{{J}_{1}\left(r{\xi }_{n}\right)}{r}\\ +{\xi }_{n}\frac{{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)}{2}\end{array}\right]\mathrm{sin}\frac{n\pi }{h}z\end{array}$$
(51)

Pore pressures and stresses are determined from Eqs. (712) as follows

$$\begin{array}{c}{p}_{1}=-{\sum }_{n=1}^{\infty }\begin{array}{c}{B}_{mn}{a}_{1k}{n}_{km}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}\frac{{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)}{r}\\ +\frac{{\eta }_{mn}^{2}\left[{J}_{0}\left(r{\eta }_{mn}\right)-{J}_{2}\left(r{\eta }_{mn}\right)\right]}{2}\\ +\frac{{n}^{2}{\pi }^{2}{J}_{0}\left(r{\eta }_{mn}\right)}{{h}^{2}}\end{array}\right\} \end{array}\\ +{C}_{m}{a}_{1k}{n}_{km}\left\{\begin{array}{c}\frac{{\lambda }_{m}\left[{J}_{0}\left(r\sqrt{-{\lambda }_{m}}\right)-{J}_{2}\left(r\sqrt{-{\lambda }_{m}}\right)\right]}{2}\\ -\frac{\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)}{r}\end{array}\right\}\\ +{a}_{1k}{n}_{km}{D}_{m}{\lambda }_{m}\mathrm{cosh}\sqrt{{\lambda }_{m}}z\end{array}$$
(52)
$$\begin{array}{c}{p}_{2}=-{\sum }_{n=1}^{\infty }\begin{array}{c}{B}_{mn}{a}_{2k}{n}_{km}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}\frac{{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)}{r}\\ +\frac{{\eta }_{mn}^{2}\left[{J}_{0}\left(r{\eta }_{mn}\right)-{J}_{2}\left(r{\eta }_{mn}\right)\right]}{2}\\ +\frac{{n}^{2}{\pi }^{2}{J}_{0}\left(r{\eta }_{mn}\right)}{{h}^{2}}\end{array}\right\} \end{array}\\ +{C}_{m}{a}_{2k}{n}_{km}\left\{\begin{array}{c}\frac{{\lambda }_{m}\left[{J}_{0}\left(r\sqrt{-{\lambda }_{m}}\right)-{J}_{2}\left(r\sqrt{-{\lambda }_{m}}\right)\right]}{2}\\ -\frac{\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)}{r}\end{array}\right\}\\ +{a}_{2k}{n}_{km}{D}_{m}{\lambda }_{m}\mathrm{cosh}\sqrt{{\lambda }_{m}}z\end{array}$$
(53)
$$\begin{array}{c}{\sigma }_{rz}=2G{\sum }_{n=1}^{\infty }{B}_{mn}{n}_{1m}{\eta }_{mn}\frac{n\pi }{h}{J}_{1}\left(r{\eta }_{mn}\right)\mathrm{sin}\frac{n\pi }{h}z\\ +G{\sum }_{n=1}^{\infty }\begin{array}{c}{A}_{n}\mathrm{sin}\frac{n\pi }{h}z\times \\ \left[\begin{array}{c}\left(\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-\frac{1}{{r}^{2}}-\frac{3{\xi }_{n}^{2}}{4}\right){J}_{1}\left(r{\xi }_{n}\right)\\ +{\xi }_{n}\frac{{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)}{2r}+\frac{{\xi }_{n}^{2}{J}_{3}\left(r{\xi }_{n}\right)}{4}\end{array}\right]\end{array}\end{array}$$
(54)
$$\begin{array}{c}{\sigma }_{rr}={C}_{m}\left\{\begin{array}{c}\left[{n}_{1m}\left(\lambda +2G\right)-{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right]{\lambda }_{m}\\ \times \frac{{J}_{0}\left(r\sqrt{-{\lambda }_{m}}\right)-{J}_{2}\left(r\sqrt{-{\lambda }_{m}}\right)}{2}\\ +\left({\overline{\alpha }}_{l}{a}_{lk}{n}_{km}-{n}_{1m}\lambda \right)\\ \frac{\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)}{r}\end{array}\right\}\\ -{\sum }_{n=1}^{\infty }\begin{array}{c}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}{B}_{mn}\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right)\times \\ \left[\frac{{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)}{r}+\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}{J}_{0}\left(r{\eta }_{mn}\right)\right]+\\ {B}_{mn}\left[{n}_{1m}\left(\lambda +2G\right)-{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right]{\eta }_{mn}^{2}\\ \times \frac{{J}_{0}\left(r{\eta }_{mn}\right)-{J}_{2}\left(r{\eta }_{mn}\right)}{2}\\ +{A}_{n}\frac{n\pi }{h}G{\xi }_{n}\left[{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)\right]\end{array}\right\}\end{array}\\ +(\lambda {n}_{1m}-{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}){D}_{m}{\lambda }_{m}\mathrm{cosh}\sqrt{{\lambda }_{m}}z\#\end{array}$$
(55)
$$\begin{array}{c}{\sigma }_{zz}={C}_{m}\left\{\begin{array}{c}\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right){\lambda }_{m}\times \\ \frac{{J}_{0}\left(r\sqrt{-{\lambda }_{m}}\right)-{J}_{2}\left(r\sqrt{-{\lambda }_{m}}\right)}{2}\\ +\left({\overline{\alpha }}_{l}{a}_{lk}{n}_{km}-{n}_{1m}\lambda \right)\\ \times \frac{\sqrt{-{\lambda }_{m}}{J}_{1}\left(r\sqrt{-{\lambda }_{m}}\right)}{r}\end{array}\right\}\\ -{\sum }_{n=1}^{\infty }\begin{array}{c}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}{B}_{mn}\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right)\times \\ \left[\begin{array}{c}\frac{{\eta }_{mn}{J}_{1}\left(r{\eta }_{mn}\right)}{r}\\ +\frac{{\eta }_{mn}^{2}\left[{J}_{0}\left(r{\eta }_{mn}\right)-{J}_{2}\left(r{\eta }_{mn}\right)\right]}{2}\end{array}\right]\\ +{B}_{mn}\left[\begin{array}{c}{n}_{1m}\left(\lambda +2G\right)\\ -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\end{array}\right]{J}_{0}\left(r{\eta }_{mn}\right)\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}\\ -{A}_{n}\frac{n\pi }{h}2G\left[\begin{array}{c}{\xi }_{n}\frac{{J}_{0}\left(r{\xi }_{n}\right)-{J}_{2}\left(r{\xi }_{n}\right)}{2}\\ +\frac{1}{r}{J}_{1}\left(r{\xi }_{n}\right)\end{array}\right]\end{array}\right\}\end{array}\\ \begin{array}{c}+\left[\begin{array}{c}\left(\lambda +2G\right){n}_{1m}\\ -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\end{array}\right]{D}_{m}{\lambda }_{m}\mathrm{cosh}\sqrt{{\lambda }_{m}}z\end{array}\#\end{array}$$
(56)
$$\begin{array}{c}F=-2\pi {C}_{m}\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right) \\ \times R\sqrt{-{\lambda }_{m}}{J}_{1}\left(R\sqrt{-{\lambda }_{m}}\right)\\ -2\pi {\sum }_{n=1}^{\infty }\begin{array}{c}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}{B}_{mn}\left(\begin{array}{c}{n}_{1m}\lambda \\ -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\end{array}\right)R{\eta }_{mn}{J}_{1}\left(R{\eta }_{mn}\right)\\ +{B}_{mn}\left[\begin{array}{c}{n}_{1m}\left(\lambda +2G\right)\\ -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\end{array}\right]\\ \times \frac{R{J}_{1}\left(R{\eta }_{mn}\right)}{{\eta }_{mn}}\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}\\ -{A}_{n}\frac{n\pi }{h}2GR{J}_{1}\left(R{\xi }_{n}\right)\end{array}\right\}\end{array}\\ \begin{array}{c}+\pi {R}^{2}\left[\begin{array}{c}\left(\lambda +2G\right){n}_{1m}\\ -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\end{array}\right]{D}_{m}{\lambda }_{m}\mathrm{cosh}\sqrt{{\lambda }_{m}}z\end{array}\#\end{array}$$
(57)

where Einstein summation convention has been applied to indices \(l\left(=\mathrm{1,2}\right)\), \(k\left(=\mathrm{1,2},3\right)\), and \(m(=\mathrm{1,2},3)\).

Appendix 3

3.1 Determination of Solution Coefficients

Before applying the boundary conditions, we express the function of \(\mathrm{cosh}\sqrt{{\lambda }_{m}}z\) in the cosine series as below

$$\begin{array}{c}\mathrm{cosh}\sqrt{{\lambda }_{m}}z={\gamma }_{m}+{\sum }_{n=1}^{\infty }{\gamma }_{mn}\mathrm{cos}\frac{n\pi z}{h}\end{array}$$
(58)
$$\begin{array}{c}where {\gamma }_{m}=\frac{Sinh\left(h\sqrt{{\lambda }_{m}}\right)}{h\sqrt{{\lambda }_{m}}}\end{array}$$
(59)
$$\begin{array}{c}{\gamma }_{mn}=\frac{2{\left(-1\right)}^{n}h\sqrt{{\lambda }_{m}}Sinh\left(h\sqrt{{\lambda }_{m}}\right)}{{n}^{2}{\pi }^{2}+{h}^{2}{\lambda }_{m}}\end{array}$$
(60)

Applying boundary conditions (1–3) into the corresponding solutions expressed in Appendix 2, we can obtain 10 equations for 10 unknowns, i.e., \({A}_{n}\), \({B}_{mn}\), \({C}_{m}\), and \({D}_{m}\), where \(m=1, 2, 3\). These equations are listed as follows:

$$\begin{array}{c}2{B}_{mn}{n}_{1m}{\eta }_{mn}\frac{n\pi }{h}{J}_{1}\left(R{\eta }_{mn}\right)+{A}_{n}{\Omega }_{n}=0\end{array}$$
(61)
$$\begin{array}{c}{C}_{m}{n}_{2m}\sqrt{-{\lambda }_{m}}{J}_{1}\left(R\sqrt{-{\lambda }_{m}}\right)=0\end{array}$$
(62)
$$\begin{array}{c}{C}_{m}{n}_{3m}\sqrt{-{\lambda }_{m}}{J}_{1}\left(R\sqrt{-{\lambda }_{m}}\right)=0\end{array}$$
(63)
$$\begin{array}{c}{B}_{mn}{n}_{2m}{\eta }_{mn}{J}_{1}\left(R{\eta }_{mn}\right)+{A}_{n}{\Psi }_{n}=0\#\end{array}$$
(64)
$$\begin{array}{c}{B}_{mn}{n}_{3m}{\eta }_{mn}{J}_{1}\left(R{\eta }_{mn}\right)+{A}_{n}{\Delta }_{n}=0\end{array}$$
(65)
$$\begin{array}{c}{C}_{m}{\beta }_{m}+{D}_{m}{\chi }_{m}={P}_{c}\#\end{array}$$
(66)
$$\begin{array}{c}{B}_{mn}{\Phi }_{mn}+{A}_{n}{\Lambda }_{n}-{D}_{m}{\Psi }_{mn}=0\end{array}$$
(67)
$$\begin{array}{c}{n}_{1m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}h=-{U}_{z0}\#\end{array}$$
(68)
$$\begin{array}{c}{n}_{2m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}h=0\end{array}$$
(69)
$$\begin{array}{c}{n}_{3m}{D}_{m}\sqrt{{\lambda }_{m}}\mathrm{sinh}\sqrt{{\lambda }_{m}}h=0\end{array}$$
(70)

where the intermediate variables are defined by

$$\begin{array}{c}{\Omega }_{n}=\left(\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-\frac{1}{{R}^{2}}-\frac{3{\xi }_{n}^{2}}{4}\right){J}_{1}\left(R{\xi }_{n}\right)\\ \quad+{\xi }_{n}\frac{{J}_{0}\left(R{\xi }_{n}\right)-{J}_{2}\left(R{\xi }_{n}\right)}{2R}+\frac{{\xi }_{n}^{2}{J}_{3}\left(R{\xi }_{n}\right)}{4}\end{array}$$
(71)
$$\begin{array}{c}{\Theta }_{n}=\frac{{\rho }_{f}\left({b}_{12}-{b}_{22}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}\frac{n\pi }{h}{J}_{1}\left(R{\xi }_{n}\right)\end{array}$$
(72)
$$\begin{array}{c}{\Delta }_{n}=\frac{{\rho }_{f}\left({b}_{12}-{b}_{11}\right)}{{b}_{11}{b}_{22}-{b}_{12}^{2}}\frac{n\pi }{h}{J}_{1}\left(R{\xi }_{n}\right)\end{array}$$
(73)
$$\begin{array}{c}{\beta }_{m}=\left[{n}_{1m}\left(\lambda +2G\right)-{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right]{\lambda }_{m} \\ \times \frac{{J}_{0}\left(R\sqrt{-{\lambda }_{m}}\right)-{J}_{2}\left(R\sqrt{-{\lambda }_{m}}\right)}{2}\\ -\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right)\frac{\sqrt{-{\lambda }_{m}}{J}_{1}\left(R\sqrt{-{\lambda }_{m}}\right)}{R}\end{array}$$
(74)
$$\begin{array}{c}{\chi }_{m}=\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right){\lambda }_{m}{\gamma }_{m}\end{array}$$
(75)
$$\begin{array}{c}{\Phi }_{mn}=\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right)\\ \times \left[\frac{{\eta }_{mn}{J}_{1}\left(R{\eta }_{mn}\right)}{R}+\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}{J}_{0}\left(R{\eta }_{mn}\right)\right]\\ +\left[{n}_{1m}\left(\lambda +2G\right)-{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right]{\eta }_{mn}^{2}\\ \times \frac{{J}_{0}\left(R{\eta }_{mn}\right)-{J}_{2}\left(R{\eta }_{mn}\right)}{2}\end{array}$$
(76)
$$\begin{array}{c}{\Lambda }_{n}=\frac{n\pi }{h}G{\xi }_{n}\left[{J}_{0}\left(R{\xi }_{n}\right)-{J}_{2}\left(R{\xi }_{n}\right)\right]\end{array}$$
(77)
$$\begin{array}{c}{\Psi }_{mn}=\left({n}_{1m}\lambda -{\overline{\alpha }}_{l}{a}_{lk}{n}_{km}\right){\lambda }_{m}{\gamma }_{mn}\end{array}$$
(78)

Solving Eqs. (60, 61, 62, 63, 64, 65, 66, 67,68 and 69), we have.

$$\begin{array}{c}\left[\begin{array}{c}{D}_{1}\\ {D}_{2}\\ {D}_{3}\end{array}\right]={\left({X}_{ij}\right)}_{3\times 3}^{-1}\left[\begin{array}{c}-{U}_{z0}\\ 0\\ 0\end{array}\right]\end{array}$$
(79)
$$\begin{array}{c}\left[\begin{array}{c}{C}_{1}\\ {C}_{2}\\ {C}_{3}\end{array}\right]={\left({Y}_{ij}\right)}_{3\times 3}^{-1}\left[\begin{array}{c}-{D}_{m}{\chi }_{m}\\ 0\\ 0\end{array}\right]\end{array}$$
(80)
$$\begin{array}{c}\left[\begin{array}{c}{A}_{n}\\ {B}_{1n}\\ \begin{array}{c}{B}_{2n}\\ {B}_{3n}\end{array}\end{array}\right]={\left({Z}_{ij}\right)}_{4\times 4}^{-1}\left[\begin{array}{c}{D}_{m}{\Psi }_{mn}\\ 0\\ \begin{array}{c}0\\ 0\end{array}\end{array}\right]\end{array}$$
(81)
$$\begin{array}{c}{X}_{ij}={n}_{ij}\sqrt{{\lambda }_{j}}\mathrm{sinh}\sqrt{{\lambda }_{j}}h, \quad i,\quad j=\mathrm{1,2},3\end{array}$$
(82)
$$\begin{array}{c}{Y}_{1j}={\beta }_{j},\quad j=\mathrm{1,2},3\end{array}$$
(83)
$$\begin{array}{c}{Y}_{ij}={n}_{ij}\sqrt{-{\lambda }_{j}}{J}_{1}\left(R\sqrt{-{\lambda }_{j}}\right), \quad i=\mathrm{2,3};\quad j=\mathrm{1,2},3\end{array}$$
(84)
$$\begin{array}{c}{Z}_{11}={\Lambda }_{n};\quad{Z}_{21}={\Omega }_{n};\quad{Z}_{31}={\Theta }_{n};\quad{Z}_{41}={\Delta }_{n}\end{array}$$
(85)
$$\begin{array}{c}{Z}_{1j}={\Phi }_{\left(j-1\right)n},\quad j=\mathrm{2,3},4\end{array}$$
(86)
$$\begin{array}{c}{Z}_{2j}=2{n}_{1(j-1)}{\eta }_{(j-1)n}\frac{n\pi }{h}{J}_{1}\left(R{\eta }_{(j-1)n}\right),\quad j=\mathrm{2,3},4\end{array}$$
(87)
$$\begin{array}{c}{Z}_{ij}={n}_{\left(i-1\right)\left(j-1\right)}{\eta }_{\left(j-1\right)n}{J}_{1}\left(R{\eta }_{\left(j-1\right)n}\right)\\ i=\mathrm{3,4};\quad j=\mathrm{2,3},4\end{array}$$
(88)

Appendix 4

4.1 Elastodynamics Solutions

The elastic solutions can be obtained by removing the pore pressure related terms from the poroelastic ones and are listed as follows.

$$\begin{array}{c}{u}_{r}=-{\sum }_{n=1}^{\infty }{\overline{B} }_{1n}{\overline{\eta }}_{1n}{J}_{1}\left(r{\overline{\eta }}_{1n}\right)\mathrm{cos}\frac{n\pi }{h}z\\ -{\overline{C} }_{1}\sqrt{-{\overline{\lambda }}_{1}}{J}_{1}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)\\ -{\sum }_{n=1}^{\infty }{\overline{A} }_{n}\frac{n\pi }{h}{J}_{1}\left(r{\overline{\xi }}_{n}\right)\mathrm{cos}\frac{n\pi }{h}z\end{array}$$
(89)
$$\begin{array}{c}{u}_{z}=-{\sum }_{n=1}^{\infty }{\overline{B} }_{1n}{J}_{0}\left(r{\overline{\eta }}_{1n}\right)\frac{n\pi }{h}\mathrm{sin}\frac{n\pi }{h}z\\ +{\overline{D} }_{1}\sqrt{{\overline{\lambda }}_{1}}\mathrm{sinh}\sqrt{{\overline{\lambda }}_{1}}z\\ +{\sum }_{n=1}^{\infty }{\overline{A} }_{n}\left[\begin{array}{c}\frac{{J}_{1}\left(r{\overline{\xi }}_{n}\right)}{r}\\ +{\overline{\xi }}_{n}\frac{{J}_{0}\left(r{\overline{\xi }}_{n}\right)-{J}_{2}\left(r{\overline{\xi }}_{n}\right)}{2}\end{array}\right]\mathrm{sin}\frac{n\pi }{h}z\end{array}$$
(90)

Pore pressures and stresses are determined from Eqs. (712) as follows

$$\begin{array}{c}{\sigma }_{rz}=2G{\sum }_{n=1}^{\infty }{\overline{B} }_{1n}{\overline{\eta }}_{1n}\frac{n\pi }{h}{J}_{1}\left(r{\overline{\eta }}_{1n}\right)\mathrm{sin}\frac{n\pi }{h}z\\ +G{\sum }_{n=1}^{\infty }{\overline{A} }_{n}\left[\begin{array}{c}\left(\begin{array}{c}\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-\frac{1}{{r}^{2}}\\ -\frac{3{\overline{\xi }}_{n}^{2}}{4}\end{array}\right){J}_{1}\left(r{\overline{\xi }}_{n}\right)\\ +{\overline{\xi }}_{n}\frac{{J}_{0}\left(r{\overline{\xi }}_{n}\right)-{J}_{2}\left(r{\overline{\xi }}_{n}\right)}{2r}\\ +\frac{{\overline{\xi }}_{n}^{2}{J}_{3}\left(r{\overline{\xi }}_{n}\right)}{4}\end{array}\right]\mathrm{sin}\frac{n\pi }{h}z\end{array}$$
(91)
$$\begin{array}{c}{\sigma }_{rr}={C}_{1}\left[\begin{array}{c}\left(\lambda +2G\right){\overline{\lambda }}_{1}\\ \times \frac{{J}_{0}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)-{J}_{2}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)}{2}\\ -\lambda \frac{\sqrt{-{\overline{\lambda }}_{1}}{J}_{1}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)}{r}\end{array}\right]\\ -{\sum }_{n=1}^{\infty }\begin{array}{c}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}{\overline{B} }_{1n}\lambda \left[\begin{array}{c}\frac{{\overline{\eta }}_{1n}{J}_{1}\left(r{\overline{\eta }}_{1n}\right)}{r}\\ +\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}{J}_{0}\left(r{\overline{\eta }}_{1n}\right)\end{array}\right]\\ +{\overline{B} }_{1n}\left(\lambda +2G\right){\overline{\eta }}_{1n}^{2}\\ \times \frac{{J}_{0}\left(r{\overline{\eta }}_{1n}\right)-{J}_{2}\left(r{\overline{\eta }}_{1n}\right)}{2}\\ +{\overline{A} }_{n}\frac{n\pi }{h}G{\overline{\xi }}_{n}\left[{J}_{0}\left(r{\overline{\xi }}_{n}\right)-{J}_{2}\left(r{\overline{\xi }}_{n}\right)\right]\end{array}\right\}\end{array}\\ +\lambda {\overline{D} }_{1}{\overline{\lambda }}_{1}\mathrm{cosh}\sqrt{{\overline{\lambda }}_{1}}z\end{array}$$
(92)
$$\begin{array}{c}{\sigma }_{zz}={\overline{C} }_{1}\lambda \left[\begin{array}{c}{\overline{\lambda }}_{1} \frac{{J}_{0}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)-{J}_{2}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)}{2}\\ -\frac{\sqrt{-{\overline{\lambda }}_{1}}{J}_{1}\left(r\sqrt{-{\overline{\lambda }}_{1}}\right)}{r}\end{array}\right]\\ -{\sum }_{n=1}^{\infty }\begin{array}{c}\mathrm{cos}\frac{n\pi }{h}z\times \\ \left\{\begin{array}{c}{\overline{B} }_{1n}\lambda \left[\begin{array}{c}\frac{{\overline{\eta }}_{1n}{J}_{1}\left(r{\overline{\eta }}_{1n}\right)}{r}\\ +\frac{{\overline{\eta }}_{1n}^{2}\left[{J}_{0}\left(r{\overline{\eta }}_{1n}\right)-{J}_{2}\left(r{\overline{\eta }}_{1n}\right)\right]}{2}\end{array}\right]\\ +{\overline{B} }_{1n}\left(\lambda +2G\right){J}_{0}\left(r{\overline{\eta }}_{1n}\right)\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}\\ -{\overline{A} }_{n}\frac{n\pi }{h}2G\left[\begin{array}{c}{\overline{\xi }}_{n}\frac{{J}_{0}\left(r{\overline{\xi }}_{n}\right)-{J}_{2}\left(r{\overline{\xi }}_{n}\right)}{2}\\ +\frac{1}{r}{J}_{1}\left(r{\overline{\xi }}_{n}\right)\end{array}\right]\end{array}\right\}\end{array}\\ \begin{array}{c}+\left(\lambda +2G\right){\overline{D} }_{1}{\overline{\lambda }}_{1}\mathrm{cosh}\sqrt{{\overline{\lambda }}_{1}}z\end{array}\end{array}$$
(93)
$$\begin{array}{c}F=-2\pi {\overline{C} }_{1}\lambda R\sqrt{-{\overline{\lambda }}_{1}}{J}_{1}\left(R\sqrt{-{\overline{\lambda }}_{1}}\right)\\ -2\pi {\sum }_{n=1}^{\infty }\left\{\begin{array}{c}{\overline{B} }_{1n}\lambda R{\overline{\eta }}_{1n}{J}_{1}\left(R{\overline{\eta }}_{1n}\right)\\ +{\overline{B} }_{1n}\left(\lambda +2G\right)\\ \times \frac{R{J}_{1}\left(R{\overline{\eta }}_{1n}\right)}{{\overline{\eta }}_{1n}}\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}\\ -{\overline{A} }_{n}\frac{n\pi }{h}2GR{J}_{1}\left(R{\overline{\xi }}_{n}\right)\end{array}\right\}\mathrm{cos}\frac{n\pi }{h}z\\ \begin{array}{c}+\pi {R}^{2}\left(\lambda +2G\right){\overline{D} }_{1}{\overline{\lambda }}_{1}\mathrm{cosh}\sqrt{{\overline{\lambda }}_{1}}z\end{array}\end{array}$$
(94)

where

$$\begin{array}{c}{\overline{\lambda }}_{1}=-\frac{\rho {\omega }^{2}}{\lambda +2G}\end{array}$$
(95)
$$\begin{array}{c}{\overline{\eta }}_{1n}=\sqrt{-\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-{\overline{\lambda }}_{1}}\end{array}$$
(96)
$$\begin{array}{c}{\overline{\xi }}_{n}=\sqrt{-\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-\frac{\rho {\omega }^{2}}{G}}\end{array}$$
(97)
$$\begin{array}{c}{\overline{D} }_{1}=-\frac{{U}_{z0}}{\sqrt{{\lambda }_{1}}\mathrm{sinh}\sqrt{{\lambda }_{1}}h}\end{array}$$
(98)
$$\begin{array}{c}{\overline{C} }_{1}=\frac{-{\overline{D} }_{1}{\overline{\chi }}_{1}}{{\overline{\beta }}_{1}}\end{array}$$
(99)
$$\begin{array}{c}\left[\begin{array}{c}{\overline{A} }_{n}\\ {\overline{B} }_{1n}\end{array}\right]={\left[\begin{array}{cc}{\overline{\Omega } }_{n}& 2{\overline{\eta }}_{1n}\frac{n\pi }{h}{J}_{1}\left(R{\overline{\eta }}_{1n}\right)\\ {\overline{\Lambda } }_{n}& {\overline{\Phi } }_{1n}\end{array}\right]}^{-1}\left[\begin{array}{c}0\\ {\overline{D} }_{1}{\overline{\Psi } }_{1n}\end{array}\right]\end{array}$$
(100)
$$\begin{array}{c}{\overline{\beta }}_{1}=\left(\lambda +2G\right){\overline{\lambda }}_{1}\\ \times \frac{{J}_{0}\left(R\sqrt{-{\overline{\lambda }}_{1}}\right)-{J}_{2}\left(R\sqrt{-{\overline{\lambda }}_{1}}\right)}{2}\\ -\lambda \frac{\sqrt{-{\overline{\lambda }}_{1}}{J}_{1}\left(R\sqrt{-{\overline{\lambda }}_{1}}\right)}{R}\end{array}$$
(101)
$$\begin{array}{c}{\overline{\chi }}_{1}=\lambda {\overline{\lambda }}_{1}{\overline{\gamma }}_{1}\end{array}$$
(102)
$$\begin{array}{c}{\overline{\Phi } }_{1n}=\lambda \left[\frac{{\overline{\eta }}_{1n}{J}_{1}\left(R{\overline{\eta }}_{1n}\right)}{R}+\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}{J}_{0}\left(R{\overline{\eta }}_{1n}\right)\right]\\ \quad+\left(\lambda +2G\right){\overline{\eta }}_{1n}^{2}\frac{{J}_{0}\left(R{\overline{\eta }}_{1n}\right)-{J}_{2}\left(R{\overline{\eta }}_{1n}\right)}{2}\end{array}$$
(103)
$$\begin{array}{c}{\overline{\Omega } }_{n}=\left(\frac{{n}^{2}{\pi }^{2}}{{h}^{2}}-\frac{1}{{R}^{2}}-\frac{3{\overline{\xi }}_{n}^{2}}{4}\right){J}_{1}\left(R{\overline{\xi }}_{n}\right)\\ \quad+{\overline{\xi }}_{n}\frac{{J}_{0}\left(R{\overline{\xi }}_{n}\right)-{J}_{2}\left(R{\overline{\xi }}_{n}\right)}{2R}+\frac{{\overline{\xi }}_{n}^{2}{J}_{3}\left(R{\overline{\xi }}_{n}\right)}{4}\end{array}$$
(104)
$$\begin{array}{c}{\overline{\Lambda } }_{n}=\frac{n\pi }{h}G{\overline{\xi }}_{n}\left[{J}_{0}\left(R{\overline{\xi }}_{n}\right)-{J}_{2}\left(R{\overline{\xi }}_{n}\right)\right]\end{array}$$
(105)
$$\begin{array}{c}{\overline{\Psi } }_{1n}=\lambda {\overline{\lambda }}_{1}{\overline{\gamma }}_{1n}\end{array}$$
(106)
$$\begin{array}{c}{\overline{\gamma }}_{1}=\frac{Sinh\left(h\sqrt{{\overline{\lambda }}_{1}}\right)}{h\sqrt{{\overline{\lambda }}_{1}}}\end{array}$$
(107)
$$\begin{array}{c}{\overline{\gamma }}_{1n}=\frac{2{\left(-1\right)}^{n}h\sqrt{{\overline{\lambda }}_{1}}Sinh\left(h\sqrt{{\overline{\lambda }}_{1}}\right)}{{n}^{2}{\pi }^{2}+{h}^{2}{\overline{\lambda }}_{1}}\end{array}$$
(108)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Phan, D.T. Analytical Modeling of Elastic Moduli Dispersion and Poromechanical Responses of a Dual-Porosity Dual-Permeability Porous Cylinder Under Dynamic Forced Deformation Test. Rock Mech Rock Eng 56, 2249–2269 (2023). https://doi.org/10.1007/s00603-022-03165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-03165-3

Keywords

Navigation