Skip to main content
Log in

Role of Fractal Effect in Predicting Crack Initiation Angle and Its Application in Hydraulic Fracturing

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In hydraulic fracturing, a prominent issue is to predict the crack initiation angle, especially for the directional fracturing process. However, the influence of the geometric irregularity of the hydraulic fracture on its initiation angle is unclear. In this study, the geometric irregularity of fractures is represented by fractal dimension, three fractal fracture criteria are derived to judge the crack initiation angle, and then their predicted values are compared to the reported experimental results. The result shows that the energy-based fractal criterion prediction is the most accurate. Furthermore, the energy-based fractal criterion is applied to evaluate the crack initiation angle in hydraulic fracturing. The predicted initiation angle of hydraulic fractures considered the crack fractal effect is more consistent with the experimental data. When the crack roughness is ignored, the predicted crack initiation angles are smaller than the experimental values, with 36–50% deviations. According to the parametric sensitivity analysis results, the initiation angle of hydraulic fractures increases with the crack fractal dimension. Moreover, the effect of the crack fractal dimension on the initiation angle of hydraulic fractures can be amplified with the increase of in situ stress difference or decrease of the Biot coefficient.

Highlights

  • Three fractal fracture criteria are derived to judge the crack initiation angle.

  • The energy-based fractal fracture criterion is applied to evaluate the crack initiation angle of hydraulic fracturing.

  • The prediction deviation of the hydraulic fracture initiation angle can be effectively reduced by considering the crack fractal dimension.

  • The hydraulic fracture initiation angle increases with the crack fractal dimension and the increasing magnitude is affected by the in situ stress and Biot coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

DHF:

Directional hydraulic fracturing

CPF:

Complex stress potential function

FMTS:

Fractal maximum tangential stress

FMTSN:

Fractal maximum tangential strain

FDSED:

Fractal distortional strain energy density

\(\sigma_{\theta }\) :

Tangential stress

\(\tau_{r\theta }\) :

Tangential stress

\(\varepsilon_{\theta }\) :

Tangential strain

\(\varepsilon_{\theta T}\) :

Tangential strain by considering T-stress

\(G\) :

Energy release rate

\(U\) :

Strain energy density

\(U_{d}\) :

Distortional strain energy density

\(U_{v}\) :

Dilatational strain energy density

\(r_{b}\) :

Plastic radius

\(r_{bcr}\) :

Critical plastic radius

\(I_{p}\) :

Second stress invariant

\(R_{p}\) :

Non-dimensional plastic radius

\(\sigma_{ij}\) :

Crack-tip stress

\(r\) :

Radial polar coordinate

\(\theta\) :

Circumpolar coordinate

\(D\) :

Fractal dimension

\(\sigma\) :

Remote stress

\(\alpha\) :

Stress singularity exponent

\(Z_{N}\) :

Complex stress potential function

\(z\) :

Complex variable

\(\sigma_{H}\) :

Maximum horizontal in situ stress

\(\sigma_{h}\) :

Minimum horizontal in situ stress

\(P\) :

Fluid injection pressure

\(\rho_{\rho }\) :

Dimensionless plastic radius a hydraulic crack tip

\(\left( {\sigma_{xx} } \right)_{{{\text{II}}}}^{f} ,\left( {\sigma_{yy} } \right)_{{{\text{II}}}}^{f} ,\left( {\tau_{xy} } \right)_{{{\text{II}}}}^{f}\) :

Stress components at a mode II fractal crack tip

\({\text{Re}} ,{\text{Im}}\) :

Real part and imaginary part of complex variable

\(\sigma_{x} ,\sigma_{y} ,\tau_{xy}\) :

Crack-tip stress components in Cartesian coordinates

\(K_{N}^{f}\) :

Intensity factors of fractal cracks

\(K_{{\text{I}}}^{f}\) :

Intensity factors of mode I fractal cracks

\(K_{{{\text{II}}}}^{f}\) :

Intensity factors of mode II fractal cracks

\(\beta\) :

Crack inclination angle

\(E\) :

Elastic modulus

\(\mu\) :

Poisson’s ratio

\(\Delta \theta\) :

Crack initiation deviation angle

\(p\) :

Pore pressure

\(\sigma_{n}\) :

Normal stress on the crack surface

\(\tau_{n}\) :

Shear stress on the crack surface

\(C_{n}\) :

Compression transmitting factor

\(C_{s}\) :

Shear transmitting factor

\(k_{n}\) :

Normal stiffness of the crack surface

\(k_{s}\) :

Shear stiffness of the crack surface

\(a\) :

Nominal length of fractal cracks

\(\alpha_{1}\) :

Biot coefficient

\(f\) :

Crack friction coefficient

\(\tau_{n}^{eff}\) :

Effective shear stress on the crack surface

\(\delta\) :

Box side length

\(N\left( \delta \right)\) :

Box counts

\(\chi \left( D \right)\) :

A parameter related to fractal dimension

\(\sigma_{e}\) :

Yield strength of rock under uniaxial tension

\(r_{\rho }\) :

Plastic radius at a hydraulic crack tip

\(\left( {\sigma_{xx} } \right)_{\rm I}^{f} ,\left( {\sigma_{yy} } \right)_{\rm I}^{f} ,\left( {\tau_{xy} } \right)_{\rm I}^{f}\) :

Stress components at a mode I fractal crack tip

\(\sigma_{x}^{f} ,\sigma_{y}^{f} ,\sigma_{z}^{f} ,\tau_{xy}^{f}\) :

Stress components at a mixed-mode I-II fractal crack tip

\(\sigma_{r}^{f} ,\sigma_{\theta }^{f} ,\tau_{\theta r}^{f}\) :

Fractal crack-tip stress components in polar coordinates

References

  • Chang KJ (1981) On the maximum strain criterion—a new approach to the angled crack problem. Eng Fract Mech 14:107–124

    Article  Google Scholar 

  • Chen Y, Jin Y, Chen M, Yi ZC, Zheng XJ (2017) Quantitative evaluation of rock brittleness based on the energy dissipation principle, an application to type II mode crack. J Nat Gas Sci Eng 45:527–536

    Article  Google Scholar 

  • Chen YL, Meng QX, Zhang JW (2018) Effects of the notch angle, notch length and injection rate on hydraulic fracturing under true triaxial stress: an experimental study. Water 10(6):801

    Article  Google Scholar 

  • Dahi-Taleghani A, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J 16(3):575–581

    Article  Google Scholar 

  • Deng JQ, Lin C, Yang Q, Liu YR, Tao ZF, Duan HF (2016) Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Comput Geotech 75:28–47

    Article  Google Scholar 

  • Du F, Wang K (2019) Unstable failure of gas-bearing coal-rock combination bodies: insights from physical experiments and numerical simulations. Process Saf Environ 129:264–279

    Article  Google Scholar 

  • Erdogan R, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. ASME J Basic Eng 85:519–527

    Article  Google Scholar 

  • Gol’dshtein RV, Mosolov AA (1991) Fractal cracks. J App Math Mech 56(4):563–571

    Article  Google Scholar 

  • He H, Dou LM, Fan J, Du TT, Sun XL (2012) Deep-hole directional fracturing of thick hard roof for rock burst prevention. Tunn Undergr Space Technol 32:34–43

    Article  Google Scholar 

  • Hou P, Liang X, Gao F, Dong JB, He J, Xue Y (2021a) Quantitative visualization and characteristics of gas flow in 3D pore-fracture system of tight rock based on lattice Boltzmann simulation. J Nat Gas Sci Eng 89(4):103867

    Article  Google Scholar 

  • Hou P, Liang X, Zhang Y, He J, Gao F, Liu J (2021b) 3D multi-scale reconstruction of fractured shale and influence of fracture morphology on shale gas flow. Nat Resour Res 30(3):2463–2481

    Article  Google Scholar 

  • Hou P, Su S, Liang X, Gao F, Cai C, Yang Y, Zhang Z (2021c) Effect of liquid nitrogen freeze–thaw cycle on fracture toughness and energy release rate of saturated sandstone. Eng Fract Mech 258:108066

    Article  Google Scholar 

  • Hou P, Su S, Gao F, Liang X, Wang S, Gao Y, Cai C (2022) Influence of liquid nitrogen cooling state on mechanical properties and fracture characteristics of coal. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-022-02851-6

    Article  Google Scholar 

  • Huang BX, Wang YZ, Cao SG (2015) Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams. Int J Rock Mech Min Sci 74:45–57

    Article  Google Scholar 

  • Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II fracture analysis. ASTM-STP 560:2–28

    Google Scholar 

  • Irwin GR (1956) Analysis of stresses and strains near end of a crack traversing a plate. J Appl Mech Trans ASME 24:361–364

    Article  Google Scholar 

  • Jin XC (2014) An integrated geomechanics and petrophysics study of hydraulic fracturing in naturally fractured reservoirs. Oklahoma: Univ Oklahoma Eng Petrol 2014:32–42

    Google Scholar 

  • Jin XC, Shah SN (2013) Fracture propagation direction and its application in hydraulic fracturing. In: SPE hydraulic fracturing technology conference, The Woodlands, Texas, USA, Society of Petroleum Engineers. https://doi.org/10.2118/163832-MS

  • Jin XC, Shah SN, Sheng M (2012) Hydraulic fracturing model based on nonlinear fracture mechanics: theory and simulation. In: SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Society of Petroleum Engineers. https://doi.org/10.2118/159909-ms

  • Khan S, Khraisheh MK (2004) A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int J Plast 20(1):55–84

    Article  Google Scholar 

  • Kumari WGP, Ranjith PG, Perera MSA, Li X, Li LH, Chen BK, Isaka BLAD, Silva VRS (2018) Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: geothermal energy from hot dry rocks. Fuel 230:138–154

    Article  Google Scholar 

  • Li X, Feng ZJ, Han G, Elsworth D, Marone C, Saffer D, Cheon DS (2016) Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2. Geomech Geophys Geo-Energy Geo-Resour 2(2):63–76

    Article  Google Scholar 

  • Liang X, Hou P, Xue Y, Yang XJ, Gao F, Liu J (2021) A fractal perspective on fracture initiation and propagation of reservoir rocks under water and nitrogen fracturing. Fractals-Complex Geom Patterns Scaling Nat Soc 29(7):2150189

    Google Scholar 

  • Liang X, Hou P, Yang XJ, Xue Y, Teng T, Gao F, Liu J (2022) On estimating plastic zones and propagation angles for mixed mode I/II cracks considering fractal effect. Fractals-Complex Geom Patterns Scaling Nat Soc 30(1):2250011

    Google Scholar 

  • Liu HY (2018) Wing-crack initiation angle: a new maximum tangential stress criterion by considering T-stress. Eng Fract Mech 199:380–391

    Article  Google Scholar 

  • Liu TY, Cao P, Lin H (2014) Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks. Theor Appl Fract Mech 74(1):55–63

    Article  Google Scholar 

  • Liu DA, Shi XS, Zhang X, Wang BN, Tang TW, Han WG (2018) Hydraulic fracturing test with prefabricated crack on anisotropic shale: Laboratory testing and numerical simulation. J Pet Sci Eng 168:409–418

    Article  Google Scholar 

  • Liu Z, Ren X, Lin X, Lian H, Yang L, Yang J (2019) Effects of confining stresses, pre-crack inclination angles and injection rates: observations from largescale true triaxial and hydraulic fracturing tests in laboratory. Rock Mech Rock Eng 53:1991–2000

    Article  Google Scholar 

  • Liu J, Xue Y, Chen W, Hou P, Wang SH, Liang X (2021a) Variational phase-field model based on lower-dimensional interfacial element in FEM framework for investigating fracture behavior in layered rocks. Eng Fract Mech 255:107962

    Article  Google Scholar 

  • Liu ZH, Wang SH, Ye HL, Yang LS, Feng F, Lian HJ, Yang D (2021b) Experimental study on the effects of pre-cracks, fracturing fluid, and rock mechanical characteristics on directional hydraulic fracturing with axial pre-cracks. Geomech Geophys Geo-Energy Geo-Resour 7(2):29

    Article  Google Scholar 

  • Maiti SK, Smith RA (1983) Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field part I: slit and elliptical cracks under uniaxial tensile loading. Int J Fract 23:281–295

    Article  Google Scholar 

  • Mirsayar MM (2015) Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater Des 86:941–947

    Article  Google Scholar 

  • Moisy F (2006) 1D, 2D and 3D box-counting, Matlab File. Laboratoire FAST, Universite Paris Sud

    Google Scholar 

  • Movassagh AB, Zhang X, Arjomand E, Haghighi M (2020) A comparison of fractal methods for evaluation of hydraulic fracturing surface roughness. APPEA J 60(1):184–196

    Article  Google Scholar 

  • Movassagh AB, Haghighi M, Zhang X, Kasperczyk D, Sayyafzadeh M (2021) A fractal approach for surface roughness analysis of laboratory hydraulic fracture. J Nat Gas Sci Eng 85:103703

    Article  Google Scholar 

  • Sih GC (1966) On the westergaard method of crack analysis. Int J Fract 2:628–631

    Article  Google Scholar 

  • Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  • Theocaris PS, Andrianopoulos NP (1982a) The T-criterion applied to ductile fracture. Int J Fract 20:R125–R130

    Article  Google Scholar 

  • Theocaris PS, Andrianopoulos NP (1982b) The Mises elastic-plastic boundary as the core region in fracture criteria. Eng Fract Mech 16(3):425–432

    Article  Google Scholar 

  • Ueda Y, Ikeda K, Yao T, Aoki M (1983) Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads. Eng Fract Mech 18:1131–1158

    Article  Google Scholar 

  • Ukadgaonker VG, Awasare PJ (1995) A new criterion for fracture initiation. Eng Fract Mech 51:265–274

    Article  Google Scholar 

  • Williams JG, Ewing PD (1972) Fracture under complex stress-the angled crack problem. Int J Fract 8(4):441–446

    Article  Google Scholar 

  • Wnuk MP, Yavari A (2003) On estimating stress intensity factors and modulus of cohesion for fractal cracks. Eng Fract Mech 70:1659–1674

    Article  Google Scholar 

  • Wnuk MP, Yavari A (2005) A correspondence principle for fractal and classical cracks. Eng Fract Mech 72:2744–2757

    Article  Google Scholar 

  • Xie HP (1996) Fractal fracture mechanics: an introduction to rock mechanics. Science Press, Beijing, pp 168–257 (in Chinese)

    Google Scholar 

  • Yavari A, Hockett KG, Sarkani S (2001) The fourth mode of fracture in fractal fracture mechanics. Int J Fract 101(4):365–384

    Article  Google Scholar 

  • Yavari A, Sarkani S, Moyer ET (2002) The mechanics of self-similar and self-affine fractal cracks. Int J Fract 114(1):1–27

    Article  Google Scholar 

  • Yehia NAB (1985) On the use of the T-criterion in fracture mechanics. Eng Fract Mech 22:189–199

    Article  Google Scholar 

  • Yehia NAB (1991) Distortional strain energy density criterion: the Y-Criterion. Eng Fract Mech 39:477–485

    Article  Google Scholar 

  • Zhang H, Wei DM (2010) Estimation of fracture toughness, driving force, and fracture energy for fractal cracks using the method of imaginary smooth crack. Eng Fract Mech 77:621–630

    Article  Google Scholar 

  • Zhou J, Chen M, Yan J, Zhang GQ (2008) Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. Int J Rock Mech Min Sci 45(7):1143–1152

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 12002270), the Key Research and Development project of Shaanxi Province (No. 2022SF-197) and the China Postdoctoral Science Foundation (Nos. 2020M673451, 2020M683686XB, 2021T140553, 2021M692600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hou.

Ethics declarations

Conflict of Interest

There is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Hou, P., Xue, Y. et al. Role of Fractal Effect in Predicting Crack Initiation Angle and Its Application in Hydraulic Fracturing. Rock Mech Rock Eng 55, 5491–5512 (2022). https://doi.org/10.1007/s00603-022-02940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-02940-6

Keywords

Navigation