Skip to main content
Log in

Reconstruction and Sampling Analysis of Parent Fracture Group in Underground Mining

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The size of a fracture within a rock mass can be obtained using borehole sampling data or exposed surfaces. This paper aims at building a method to estimate the fracture size, without the presupposed size distribution, based on full three-dimensional geometric parameters (shape, orientation and position). In this study, the rock fracture was considered as an elliptical plane, and each set of fractures had the same aspect ratio. The statistical parameters of fracture size were derived, from sample (sub fracture group) to population (parent fracture group), based on multiple borehole samples. Parent fracture group simulations were realized using MATLAB, and the codes were designed by the authors. Moreover, in-situ time domain electromagnetic methods (TEM) and borehole induced polarization methods (BPM) were used to validate the Monte Carlo simulation. The results revealed that the statistical rules of Monte Carlo simulation of the parent fracture group are similar to those of the in-situ detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Sit W, Al-Nuaimy W, Marelli M, Al-Ataby A (2016) Visual texture for automated characterisation of geological features in borehole televiewer imagery. J Appl Geophys 119:139–146

    Article  Google Scholar 

  • Assous S, Elkington P, Clark S, Whetton J (2013) Automated detection of planar geologic features in borehole images. Geophysics 79(1):D11–D19

    Article  Google Scholar 

  • Bae D-S, Kim K-s, Koh Y-K, Kim J-Y (2011) Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer. Rock Mech Rock Eng 44:497–504

    Article  Google Scholar 

  • Baobin G, Xiaolei W, Mingli Z, Jianwei Z (2012) Dynamic development characteristics of two zones of overburden strata under conditions of compound roof, highly gassy and thick coal seam in full-mechanized top coal caving faces. Chin J Rock Mechan Eng 31(Supp. 1):3444–3451

    Google Scholar 

  • Barthélémy J-F, Guiton MLE, Daniel J-M (2009) Estimates of fracture density and uncertainties from well data. Int J Rock Mech Min Sci 46:590–603

    Article  Google Scholar 

  • Cunninghama KJ, Carlson JI, Hurley NF (2004) New method for quantification of vuggy porosity from digital optical borehole images as applied to the karstic Pleistocene limestone of the Biscayne aquifer, southeastern Florida. J Appl Geophys 55:77–90

    Article  Google Scholar 

  • Dong-ming Z, Yang H, Rao Zi, Zhong-yu Ou, Tang P (2019) Research on application of transient electromagnetic method in hydraulic fracturing. Geotech Geol Eng 38(1):507–516

    Google Scholar 

  • Fisher R (1952) Dispersion on a sphere. Proc R Soc London Ser A 217:295–305

    Article  Google Scholar 

  • Gao M, Wencheng Jin Ru, Zhang JX, Bin Yu, Duan H (2016) Fracture size estimation using data from multiple boreholes. Int J Rock Mech Min Sci 86:29–41

    Article  Google Scholar 

  • Gillespie PA, Howard CB, Walsh JJ, Watterson J (1993) Measurement and characterisation of spatial distributions of fractures. Tectonophysics 226:113–141

    Article  Google Scholar 

  • Guo J, Zheng J, Lü Q, Yulong C, Deng J (2020) A procedure to estimate the accuracy of circular and elliptical discs for representing the natural discontinuity facet in the discrete fracture network models. Comput Geotech 121:103483

    Article  Google Scholar 

  • Han Z, Wang C, Zhu H (2015) Research on deep joints and lode extension based on digital borehole camera technology. Polish Maritime Res 22(Supp. 1):10–14

    Article  Google Scholar 

  • Hekmatnejad A, Emery X, Brzovic A, Schachter P, Vallejos JA (2017) Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine, Chile. Eng Geol 228:97–106

    Article  Google Scholar 

  • Hekmatnejad A, Emery X, Vallejos JA (2018) Robust estimation of the fracture diameter distribution from the true trace length distribution in the Poisson-disc discrete fracture network model. Comput Geotech 95:137–146

    Article  Google Scholar 

  • Hudson JA, Priest SD (1981) Discontinuity frequency in rock masses. Int J Rock Mech Min Sci 20(2):73–89

    Article  Google Scholar 

  • Jin W, Mingzhong Gao Ru, Zhang GZ (2014) Analytical expressions for the size distribution function of elliptical joints. Int J Rock Mech Min Sci 70:201–211

    Article  Google Scholar 

  • Jun Zheng Yu, Zhao QL, Liu T, Deng J, Chen R (2017) Estimation of the three-dimensional density of discontinuity systems based on one-dimensional measurements. Int J Rock Mech Min Sci 94:1–9

    Article  Google Scholar 

  • Kemeny J, Post R (2003) Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Comput Geosci 29:65–77

    Article  Google Scholar 

  • Kulatilake PHSW, Wu TH (1984) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17:215–232

    Article  Google Scholar 

  • La Pointe PR (2002) Derivation of parent fracture population statistics from trace length measurements of fractal fracture populations. Int J Rock Mech Min Sci 39:381–388

    Article  Google Scholar 

  • Li S, Feng X-T, Li Z, Zhang C, Chen B (2012) Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction. J Rock Mech Min Sci 55:125–138

    Article  Google Scholar 

  • Li SJ, Xia-Ting Feng CY, Wang JAH (2013) ISRM suggested method for rock fractures observations using a borehole digital optical televiewer. Rock Mech Rock Eng 46:635–644

    Article  Google Scholar 

  • Li X, Zuo Y, Zhuang X, Zhu H (2014) Estimation of fracture trace length distributions using probability weighted moments and L-moments. Eng Geol 168:69–85

    Article  Google Scholar 

  • Malone T, Hubbard B, Merton-Lyn D, Worthington P, Zwiggelaar R (2013) Borehole and ice feature annotation tool (BIFAT): a program for the automatic and manual annotation of glacier borehole images. Comput Geosci 51:381–389

    Article  Google Scholar 

  • Mauldon M (1998) Estimating mean fracture trace length and density from observations in convex windows. Rock Mech Rock Eng 31(4):201–216

    Article  Google Scholar 

  • Mauldon M, Mauldon JG (1997) Fracture sampling on a cylinder: from scanlines to boreholes and tunnels. Rock Mech Rock Eng 30(3):129–144

    Article  Google Scholar 

  • Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci 18:221–228

    Article  Google Scholar 

  • Palchik V (2003) Formation of fractured zones in overburden due to longwall mining. Environ Geol 44:28–38

    Article  Google Scholar 

  • Palmén JA (2003) Technique to map foliation from borehole images, a case study of borehole OL-KR12, Olkiluoto of Eurajoki, W-Finland. In: Proceedings of the 6th SEGJ symposium-Imaging Technology-Tokyo, Japan 22–24 January 2003, pp 370–379

  • Piggott AR (1997) Fractal relations for the diameter and trace length of disc-shaped fractures. J Geophys Res 102(B8):18121–18125

    Article  Google Scholar 

  • Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci 18:183–197

    Article  Google Scholar 

  • Song J-J (2006) Estimation of areal frequency and mean trace length of discontinuities observed in non-planar surfaces. Rock Mech Rock Eng 39(2):131–146

    Article  Google Scholar 

  • Song J-J, Lee C-I (2001) Estimation of joint length distribution using window sampling. Int J Rock Mech Min Sci 38:519–528

    Article  Google Scholar 

  • Song J-J, Lee C-I, Seto M (2001) Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunn Undergr Space Technol 16:341–351

    Article  Google Scholar 

  • Thapa BB, Hughett P, Karasaki K (1997) Semi-automatic analysis of rock fracture orientations from borehole wall images. Geophysics 62(1):129–137

    Article  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91(B2):1921–1926

    Article  Google Scholar 

  • Villaescusa E, Brown ET (1992) Maximum likelihood estimation of joint size from trace length measurements. Rock Mech Rock Eng 25:67–87

    Article  Google Scholar 

  • Viseur S, Lamarche J, Akriche C, Chatelée S, Mouketo MM, Gauthier B (2020) Accurate computation of fracture density variations: a new approach tested on fracture corridors. Math Geosci 114:1–16

    Google Scholar 

  • Warburton PM (1980) A stereological interpretation of joint trace data. Int J Rock Mech Min Sci 17:181–190

    Article  Google Scholar 

  • Williams JH, Johnson CD (2004) Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. J Appl Geophys 55:151–159

    Article  Google Scholar 

  • Xu W, Zhang Y, Li X, Wang X, Ma F, Zhao J, Zhang Y (2020) Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China. Eng Geol 269:105553

    Article  Google Scholar 

  • Yu-Jun Z, Hua-Xing Z, Pei-Pei C (2008) Visual exploration of fissure field of overburden and rock. J China Coal Soc 33(11):1216–1219

    Google Scholar 

  • Zhang L, Einstein HH (1998) Estimating the mean trace length of rock discontinuities. Rock Mech Rock Eng 31(4):217–235

    Article  Google Scholar 

  • Zhang L, Einstein HH (2010) The planar shape of rock joints. Rock Mech Rock Eng 43:55–68

    Article  Google Scholar 

  • Zhang L, Einstein HH, Dershowitz WS (2002) Stereological relationship between trace length and size distribution of elliptical discontinuities. Géotechnique 52(6):419–433

    Article  Google Scholar 

  • Zhang Qi, Wang X, He L, Tian L (2021) Estimation of fracture orientation distributions from a sampling window based on geometric probabilistic method. Rock Mech Rock Eng 54:3051–3075

    Article  Google Scholar 

  • Zheng J, Deng J, Yang X, Wei J, Zheng H, Cui Y (2014) An improved Monte Carlo simulation method for discontinuity orientations based on Fisher distribution and its program implementation. Comput Geotech 61:266–276

    Article  Google Scholar 

  • Zheng J, Deng J, Zhang G, Yang X (2015) Validation of Monte Carlo simulation for discontinuity locations in space. Comput Geotech 67:103–109

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fundamental Research Funds for the Central Universities (No. 2020CDCGJ041) and the National Natural Science Foundation of China (No. 51874053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Zhang, D., Zhou, X. et al. Reconstruction and Sampling Analysis of Parent Fracture Group in Underground Mining. Rock Mech Rock Eng 54, 6155–6172 (2021). https://doi.org/10.1007/s00603-021-02596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02596-8

Keywords

Navigation