Skip to main content
Log in

Fluid Overpressurization of Rock Fractures: Experimental Investigation and Analytical Modeling

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Fluid-induced seismicity in tectonically inactive regions has been attributed to fluid overpressurization of rock fractures during natural resource extraction and storage. We conducted a series of triaxial shear-flow experiments on sawcut fractures in granite and showed that the fracture responses can be dissimilar under various fluid pressurization conditions. For pressure-controlled fluid pressurization, a uniform fluid pressure distribution can be promoted by lowering pressurization rate and enhancing fracture permeability. However, during volume-controlled fluid pressurization, a high pressurization rate causes a drastic increase in fluid pressure before fracture failure. In this case, our analytical model reveals that the fracture area and normal stiffness also influence fluid pressure variations. The maximum seismic moment predicted by this model is well validated by the experimental data for the cases with low pressurization rates. The discrepancy between the analytical and experimental data increases with higher fluid overpressure ratio owing to the assumption of uniform fluid pressure distribution in the model. The sensitivity analysis demonstrates the importance of fracture size estimation in the maximum seismic moment prediction. Our model can potentially be applied to control the fluid overpressurization of rock fractures and to mitigate the risks of fluid-induced seismicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bao X, Eaton DW (2016) Fault activation by hydraulic fracturing in western Canada. Science 354(6318):1406–1409

    Article  Google Scholar 

  • Bhattacharya P, Viesca RC (2019) Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364(6439):464–468

    Article  Google Scholar 

  • Brady BH, Brown ET (1993) Rock mechanics for underground mining. Springer Science & Business Media

    Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116(4):615–626

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Nussbaum C, Birkholzer J (2018) On the relationship between fault permeability increases, induced stress perturbation and the growth of aseismic slip during fluid injection. Geophys Res Lett 45(20):11012–11020

    Article  Google Scholar 

  • Christensen K, Danon L, Scanlon T, Bar P (2002) Unified scaling law for earthquakes. Proc Natl Acad Sci USA 99(s1):2509–2513

    Article  Google Scholar 

  • Collettini C, Di Stefano G, Carpenter B, Scarlato P, Tesei T, Mollo S, Trippetta F, Marone C, Romeo G, Chiaraluce L (2014) A novel and versatile apparatus for brittle rock deformation. Int J Rock Mech Min Sci 66:114–123

    Article  Google Scholar 

  • Crawford BR, Faulkner DR, Rutter EH (2008) Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. J Geophys Res 113(B3):B03207

    Google Scholar 

  • Daines SR (1982) Aquathermal pressuring and geopressure evaluation. Am Assoc Pet Geol Bull 66(7):931–939

    Google Scholar 

  • De Barros L, Guglielmi Y, Rivet D, Cappa F, Duboeuf L (2018) Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments. C R Geosci 350(8):464–477

    Article  Google Scholar 

  • Diao Y, Espinosa-Marzal RM (2018) The role of water in fault lubrication. Nat Commun 9(1):2309

    Article  Google Scholar 

  • Duncan JM (2000) Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng 126(4):307–316

    Article  Google Scholar 

  • Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1225942

    Article  Google Scholar 

  • Elsworth D, Spiers CJ, Niemeijer AR (2016) Understanding induced seismicity. Science 354(6318):1380–1381

    Article  Google Scholar 

  • Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Min Sci 36(5):641–650

    Article  Google Scholar 

  • Fang Y, Elsworth D, Wang C, Ishibashi T, Fitts JP (2017) Frictional stability-permeability relationships for fractures in shales. J Geophys Res Solid Earth 122(3):1760–1776

    Article  Google Scholar 

  • Galis M, Ampuero JP, Mai PM, Cappa F (2017) Induced seismicity provides insight into why earthquake ruptures stop. Sci Adv 3(12):eaap7528

    Article  Google Scholar 

  • Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection-induced aseismic slip. Science 348(6240):1224–1226

    Article  Google Scholar 

  • Hamdia KM, Silani M, Zhuang X, He P, Rabczuk T (2017) Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int J Fract 206(2):215–227

    Article  Google Scholar 

  • Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of clay-rich fault gouge. J Geophys Res 114(B5):B05409

    Google Scholar 

  • Ji Y (2020) Shear-flow characteristics of rock fractures and implications for injection-induced seismicity. Ph.D. thesis, Nanyang Technological University, Singapore

  • Ji Y, Wu W (2020) Injection-driven fracture activation in granite: mechanism and implications. Tectonophys 791:228572

    Article  Google Scholar 

  • Ji Y, Wu W, Zhao Z (2019) Unloading-induced rock fracture activation and maximum seismic moment prediction. Eng Geol 262:105352

    Article  Google Scholar 

  • Ji Y, Wanniarachchi WAM, Wu W (2020) Effect of fluid pressure heterogeneity on injection-induced fracture activation. Comput Geotech 123:103589

    Article  Google Scholar 

  • Jia YZ, Wu W, Kong XZ (2020) Injection-induced slip heterogeneity on faults in shale reservoirs. Int J Rock Mech Min Sci 131:104363

    Article  Google Scholar 

  • Kakurina M, Guglielmi Y, Nussbaum C, Valley B (2020) In situ direct displacement information on fault reactivation during fluid injection. Rock Mech Rock Eng 53(10):4313–4328

    Article  Google Scholar 

  • Kanamori H, Brodsky EE (2001) The physics of earthquakes. Phys Today 54(6):34–40

    Article  Google Scholar 

  • Kohli AH, Zoback MD (2013) Frictional properties of shale reservoir rocks. J Geophys Res Solid Earth 118(9):5109–5125

    Article  Google Scholar 

  • Li Z, Wong LNY, Teh CI (2020) Influence of thermal and mechanical loading on development of microcracks in granite. Rock Mech Rock Eng 53(5):2035–2051

    Article  Google Scholar 

  • Ma S, Shimamoto T, Yao L, Togo T, Kitajima H (2014) A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthq Sci 27(5):469–497

    Article  Google Scholar 

  • Marone C, Scholz CH (1989) Particle-size distribution and microstructures within simulated fault gouge. J Struct Geol 11(7):799–814

    Article  Google Scholar 

  • McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119(2):1008–1019

    Article  Google Scholar 

  • McGarr A, Barbour AJ (2018) Injection-induced moment release can also be aseismic. Geophys Res Lett 45(11):5344–5351

    Article  Google Scholar 

  • Passelègue FX, Brantut N, Mitchell TM (2018) Fault reactivation by fluid injection: controls from stress state and injection rate. Geophys Res Lett 45(23):12837–12846

    Article  Google Scholar 

  • Rathnaweera TD, Wu W, Ji Y, Gamage RP (2020) Understanding injection-induced seismicity in enhanced geothermal systems: from the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth Sci Rev 205:103182

    Article  Google Scholar 

  • Rutqvist J, Noorishad J, Tsang CF, Stephansson O (1998) Determination of fracture storativity in hard rocks using high-pressure injection testing. Water Resour Res 34(10):2551–2560

    Article  Google Scholar 

  • Rutter E, Hackston A (2017) On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philos Trans R Soc A 375(2103):20160001

    Article  Google Scholar 

  • Rutter EH, Mecklenburgh J (2018) Influence of normal and shear stress on the hydraulic transmissivity of thin cracks in a tight quartz sandstone, a granite, and a shale. J Geophys Res Solid Earth 123(2):1262–1285

    Article  Google Scholar 

  • Saxena S, Ger AM, Sengupta A (1988) Reservoir induced seismicity – a new model. Int J Numer Anal Methods Geomech 12(3):263–281

    Article  Google Scholar 

  • Schultz R, Skoumal RJ, Brudzinski MR, Eaton D, Baptie B, Ellsworth W (2020) Hydraulic fracturing-induced seismicity. Rev Geophys 58(3):e2019RG000695

    Article  Google Scholar 

  • Scuderi MM, Collettini C (2018) Fluid injection and the mechanics of frictional stability of shale-bearing faults. J Geophys Res Solid Earth 123(10):8364–8384

    Article  Google Scholar 

  • Sobol IM (1990) On sensitivity estimation for nonlinear mathematical models. Mat Modelirov 2(1):112–118

    Google Scholar 

  • Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons

    Google Scholar 

  • Talwani P (1997) On the nature of reservoir-induced seismicity. Pure Appl Geophys 150(3–4):473–492

    Article  Google Scholar 

  • Tembe S, Lockner DA, Wong TF (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite. J Geophys Res 115(B3):B03416

    Google Scholar 

  • Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 100:19–31

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Worthington M, Lubbe R (2007) The scaling of fracture compliance. Geol Soc Spec Publ 270(1):73–82

    Article  Google Scholar 

  • Wu W, Zhao J (2015) Effect of water content on P-wave attenuation across a rock fracture filled with granular materials. Rock Mech Rock Eng 48(3):867–871

    Article  Google Scholar 

  • Wu W, Zoback MD, Kohli AH (2017) The impacts of effective stress and CO2 sorption on the matrix permeability of shale reservoir rocks. Fuel 203:179–186

    Article  Google Scholar 

  • Wynants-Morel N, Cappa F, De Barros L, Ampuero JP (2020) Stress perturbation from aseismic slip drives the seismic front during fluid injection in a permeable fault. J Geophys Res Solid Earth 125:e2019JB019179

    Article  Google Scholar 

  • Ye Z, Ghassemi A (2018) Injection-induced shear slip and permeability enhancement in granite fractures. J Geophys Res Solid Earth 123(10):9009–9032

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A (2015) Numerical investigation on stress shadowing in fluid injeciton-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mech Rock Eng 48(4):1439–1454

    Article  Google Scholar 

  • Zang A, Zimmermann G, Hofmann H, Stephansson O, Min KB, Kim KY (2019) How to reduce fluid-injection-induced seismicity. Rock Mech Rock Eng 52(2):475–493

    Article  Google Scholar 

  • Zhang L, Li J, Sun X, Liao W, Zhao Y, Wei G, He C (2018) A possible mechanism of reservoir-induced earthquakes in the Three Gorges Reservoir, Central China. Bull Seismol Soc Am 108(5B):3016–3028

    Article  Google Scholar 

  • Zoback MD (2010) Reservoir geomechanics. Cambridge University Press

    Google Scholar 

Download references

Acknowledgements

Wei Wu gratefully acknowledges the support of Start-Up Grant from Nanyang Technological University, Singapore. This study is also supported by Ministry of Education, Singapore (Grant No. RG152/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Fang, Z. & Wu, W. Fluid Overpressurization of Rock Fractures: Experimental Investigation and Analytical Modeling. Rock Mech Rock Eng 54, 3039–3050 (2021). https://doi.org/10.1007/s00603-021-02453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02453-8

Keywords

Navigation