Skip to main content
Log in

Ultimate Bearing Capacity of Rock Mass Foundations Subjected to Seepage Forces Using Modified Hoek–Brown Criterion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The experimental data shows that most rocks behave nonlinearly in nature. The modified nonlinear Hoek–Brown failure criterion was considered to investigate the bearing capacity problem of shallow rigid foundations on rock masses subjected to horizontal seepage forces. Two multi-wedge translational failure mechanisms, including symmetrical and non-symmetrical mechanisms were used in the closed-form of the upper bound method of the limit analysis theory. The symmetrical failure mechanism was used in the case of no seepage, while the seepage effect was considered in the non-symmetrical mechanism. The variation of seepage forces was obtained as a function of gradient ratio i(γw/γsub) in the developed formulation. The bearing capacity coefficients Nγ, Nq and Nσ are introduced for the case of seepage flow condition. The results show that the magnitude of the bearing capacity coefficients reduces continuously with an increase in the value of gradient ratio i(γw/γsub). The obtained results were compared and offered for functional use in foundation engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

B 0 :

Width of footing

c :

Cohesion

σ ci :

Uniaxial compressive strength of the intact rock

σ n :

Normal stress

σ′ 3max :

Upper limit of confining stress

σ′1 and σ′3 :

Major and minor effective stresses at failure, respectively

m b :

Value of the Hoek–Brown constant m for the rock mass

m i :

Value of m for the intact rock

s and a :

Constants which depend upon the characteristics of the rock mass

τ :

Shear stress

GSI:

Geological strength index of rock mass

D :

Disturbance coefficient

di and li :

Discontinuity lines

i(γw/γsub):

Gradient ratio

Nσ, Nq and Nγ :

Bearing capacity factors of dry rock mass

\(N_{\sigma }^{S} , \;N_{q}^{S}\) and \(N_{\gamma }^{S}\) :

Bearing capacity factors in the presence of water seepage

N σ0 :

Bearing capacity factor for weightless rock

k :

Number of rigid blocks in failure mechanism

q uD :

Ultimate bearing capacity of the dry rock mass

q uS :

Ultimate bearing capacity of the rock mass subjected to seepage

S i :

Area of block i

V 0 :

Initial downward velocity of footing for M1 mechanism

V i :

Velocities of the blocks i = 1,…, k

γ :

Unit weight of rock

ΔV :

Velocity along each velocity discontinuity

θ, αi and βi :

Angular parameters of failure mechanisms

ϕ t :

Tangential friction angle

c′ :

The equivalent Mohr–Coulomb cohesion of the rock mass

ϕ′ :

The equivalent Mohr–Coulomb friction angle of the rock mass

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Imani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: M1 Mechanism (Dry Rock Masses)

1.1 Geometry

For the triangular block i, the lengths li and di and the area Si are given as follows:

$$l_{i} = \frac{{B_{0} }}{2\cos \theta }\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}$$
(23)
$$d_{i} = \frac{{B_{0} }}{2\cos \theta } \frac{{\sin \alpha_{i} }}{{\sin (\alpha_{i} + \beta_{i} )}}\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}$$
(24)
$$S_{i} = \frac{{B_{0}^{2} }}{2}\frac{{\sin \alpha_{i} \sin \beta_{i} }}{{4\cos^{2} \theta \sin (\alpha_{i} + \beta_{i} )}}\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin^{2} \beta_{j} }}{{\sin^{2} (\alpha_{j} + \beta_{j} )}}$$
(25)

1.2 Internal Energy Dissipation

1. Along BC:

$$D_{\text{BC}} = c_{0,1} B_{0} f_{1} \left( {\alpha_{i} , \;\beta_{i} , \;\phi_{i} , \;\phi_{i,i + 1} , \;\theta } \right)V_{0} ,$$
(26)

where

$$f_{1} = \frac{{\cos \phi_{0,1} \cos (\beta_{1} - \theta - \phi_{1} )}}{{2\cos \theta \sin (\beta_{1} - \varphi_{1} - \phi_{0,1} )}} \times c_{0,1}$$
(27)

2. Along lines di (i = 1, …, k):

$$D_{{d_{i (i = 1, \ldots , k)} }} = c_{i} B_{0} f_{2} \left( {\alpha_{i} , \;\beta_{i} , \;\phi_{i} ,\; \phi_{i,i + 1} , \;\theta } \right)V_{0} ,$$
(28)

where

$$f_{2} = \frac{{ \cos (\theta - \phi_{0,1} ) }}{{2\cos \theta \sin (\beta_{1} - \phi_{1} - \phi_{0,1} )}} \mathop \sum \limits_{i = 1}^{k} \left[ {c_{i} \cos \phi_{i} \frac{{\sin \alpha_{i} }}{{\sin (\alpha_{i} + \beta_{i} )}}\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin \beta_{j} \sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\alpha_{j} + \beta_{j} )\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}} \right].$$
(29)

3. Along lines li (i = 2, …, k):

$$D_{{l_{i (i = 1, \ldots , k)} }} = c_{i,i + 1} B_{0} f_{3} \left( {\alpha_{i} , \;\beta_{i} ,\; \phi_{i} ,\; \phi_{i,i + 1} , \;\theta } \right)V_{0} ,$$
(30)

where

$$f_{3} = \frac{{ \cos (\theta - \phi_{0,1} ) }}{{2\cos \theta \sin (\beta_{1} - \phi_{1} - \phi_{0,1} )}}\sum\limits_{i = 2}^{k} {\left[ {c_{i,i + 1} \cos \phi_{i,i + 1} \frac{{\sin (\alpha_{i - 1} + \beta_{i - 1} + \phi_{i} - \phi_{i - 1} - \beta_{i} )}}{{\sin (\alpha_{i - 1} + \beta_{i - 1} - \phi_{i - 1} - \phi_{i,i - 1} )}} \times \mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}} \times \mathop \prod \limits_{j = 1}^{i - 2} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}} \right]} .$$
(31)

Because of the symmetry of the M1 mechanism, the total energy dissipation in the whole mechanism is twice the summation of these three parts, i.e., Eqs. (24), (28), and (30):

$$\sum D = 2\left( {D_{\text{BC}} + D_{{d_{i (i = 1, \ldots , k)} }} + D_{{l_{i (i = 2, \ldots , k)} }} } \right)$$
(32)

1.3 External Work

1. External work due to the surcharge loading:

$$W_{{q_{0} }} = q_{0} B_{0} f_{4} \left( {\alpha_{i} , \;\beta_{i} , \;\phi_{i} , \;\phi_{i,i + 1} , \;\theta } \right)V_{0}$$
(33)
$$\begin{aligned} f_{4} = \frac{{ \cos \left( {\theta - \phi_{0,1} } \right) }}{{\cos \theta \sin \left( {\beta_{1} - \phi_{1} - \phi_{0,1} } \right)}}\frac{{\sin \beta_{k} }}{{\sin \left( {\alpha_{k} + \beta_{k} } \right)}}\sin \left( {\beta_{k} - \theta - \mathop \sum \limits_{j = 1}^{k - 1} \alpha_{j} - \phi_{k} } \right) \hfill \\ \times \mathop \prod \limits_{j = 1}^{k - 1} \frac{{\sin \beta_{j} \sin \left( {\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} } \right)}}{{\sin \left( {\alpha_{j} + \beta_{j} } \right)\sin \left( {\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} } \right)}} \hfill \\ \end{aligned}$$
(34)

2. External work due to self-weight of the central triangular wedge, ABC:

$$W_{\text{ABC}} = \frac{{\gamma B_{0}^{2} }}{2}\left[ {f_{5} \left( {\alpha_{i} ,\; \beta_{i} , \;\phi_{i} , \;\phi_{i,i + 1} , \;\theta } \right)} \right]V_{0}$$
(35)

where

$$f_{5} = \frac{\tan \theta }{2}$$
(36)

3. External work due to self-weights of the remaining 2k triangular wedges:

$$\mathop \sum \limits_{i = 1}^{2k} W_{i} = \frac{{\gamma B_{0}^{2} }}{2}\left[ {f_{6} \left( {\alpha_{i} , \;\beta_{i} ,\; \phi_{i} ,\; \phi_{i,i + 1} , \;\theta } \right)} \right]V_{0}$$
(37)

where

$$f_{6} = \frac{{\cos (\theta - \phi_{0,1} )}}{{2\cos^{2} \theta \sin (\beta_{1} - \phi_{1} - \phi_{0,1} ) }}\sum\limits_{i = 1}^{k} {\left[ { \frac{{\sin \alpha_{i} \sin \beta_{i} }}{{\sin (\alpha_{i} + \beta_{i} )}}\sin \left( {\beta_{i} - \theta - \mathop \sum \limits_{j = 1}^{i - 1} \alpha_{j} - \phi_{i} } \right) \times \mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin^{2} \beta_{j} \sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin^{2} (\alpha_{j} + \beta_{j} )\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}} \right].}$$
(38)

4. External work due to the footing load:

$$W_{{q_{\text{uD}} }} = q_{\text{uD}} V_{0} .$$
(39)

The total external work is the summation of the four contributions, i.e., Eqs. (33), (35), (37), and (39):

$$\sum W_{\text{ext}} = W_{{q_{0} }} + W_{\text{ABC}} + \mathop \sum \limits_{i = 1}^{2k} W_{i} + W_{{q_{\text{uD}} }} .$$
(40)

Appendix 2: M2 Mechanism (Rock Masses Subjected to Seepage)

2.1 Geometry

For the triangular block i, the lengths li and di, and the area Si are given as follows:

$$l_{i} = B_{0} \frac{{\sin \beta_{1} }}{{\sin (\alpha_{1} + \beta_{1} )}}\mathop \prod \limits_{j = 2}^{i} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}$$
(41)
$$d_{i} = B_{0} \frac{{\sin \beta_{1} }}{{\sin (\alpha_{1} + \beta_{1} )}}\frac{{\sin \alpha_{i} }}{{\sin \beta_{i} }}\mathop \prod \limits_{j = 2}^{i} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}$$
(42)
$$S_{i} = \frac{{B_{0}^{2} }}{2}\frac{{\sin^{2} \beta_{1} }}{{\sin^{2} (\alpha_{1} + \beta_{1} )}}\frac{{\sin \alpha_{i} \sin (\alpha_{i} + \beta_{i} )}}{{\sin \beta_{i} }}\mathop \prod \limits_{j = 2}^{i} \frac{{\sin^{2} \beta_{j} }}{{\sin^{2} (\alpha_{j} + \beta_{j} )}}$$
(43)

2.2 Internal Energy Dissipation

1. Along lines di (i = 1, …, k):

$$D_{{d_{i (i = 1, \ldots , k)} }} = c_{i} B_{0} g_{1} \left( {\alpha_{i} , \;\beta_{i} , \;\phi_{i} , \;\phi_{i,i + 1} , \;\theta } \right)V_{0}$$
(44)

where

$$g_{1} = \frac{{\sin \beta_{1} }}{{\sin \left( {\alpha_{1} + \beta_{1} } \right)}}\sum\limits_{i = 1}^{k} {\left[ {c_{i} \cos \phi_{i} \frac{{\sin \alpha_{i} }}{{\sin \beta_{i} }} \times \mathop \prod \limits_{j = 2}^{i} \frac{{\sin \beta_{j} }}{{\sin \left( {\alpha_{j} + \beta_{j} } \right)}}\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin \left( {\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} } \right)}}{{\sin \left( {\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} } \right)}}} \right]}$$
(45)

2. Along lines li (i = 1, …, k − 1):

$$D_{{l_{i (i = 1, \ldots , k - 1)} }} = c_{i,i + 1} B_{0} g_{2} \left( {\alpha_{i} , \;\beta_{i} , \;\phi_{i} ,\; \phi_{i,i + 1} ,\; \theta } \right)V_{0}$$
(46)

where

$$g_{2} = \frac{{\sin \beta_{1} }}{{\sin (\alpha_{1} + \beta_{1} ) }}\sum\limits_{i = 1}^{k = 1} {\left[ {c_{i,i + 1} \cos \phi_{i,i + 1} \frac{{\sin (\alpha_{i} + \beta_{i} + \phi_{i + 1} - \phi_{i} - \beta_{i + 1} )}}{{\sin (\beta_{i + 1} - \phi_{i + 1} - \phi_{i,i + 1} )}}\mathop \prod \limits_{j = 2}^{i} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}\mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}} \right]} .$$
(47)

The total energy dissipation in the whole mechanism is equal to the summation of these two parts, i.e., Eqs. (44) and (46):

$$\sum {D = \left( {D_{{d_{i (i = 1, \ldots , k)} }} + D_{{l_{i (i = 2, \ldots , k)} }} } \right)} .$$
(48)

2.3 External Work

1. External work due to self-weights and seepage forces of the rock mass in motion of the k triangular rigid blocks:

$$W_{\text{rockmass}} = \frac{{\gamma B_{0}^{2} }}{2}\left[ {g_{3} + i\left( {\frac{{\gamma_{\text{w}} }}{{\gamma_{\text{sub}} }}} \right) g_{4} } \right]V_{1} ,$$
(49)

where

$$g_{3} = \frac{{\sin \beta_{1} }}{{\sin (\alpha_{1} + \beta_{1} )}}\sin \left( {\beta_{k} - \mathop \sum \limits_{j = 1}^{k - 1} \alpha_{j} - \phi_{k} } \right) \times \mathop \prod \limits_{j = 2}^{k} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}\mathop \prod \limits_{j = 1}^{k - 1} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}$$
(50)
$$g_{4} = \frac{{\sin \beta_{1} }}{{\sin (\alpha_{1} + \beta_{1} )}}\cos \left( {\beta_{k} - \mathop \sum \limits_{j = 1}^{k - 1} \alpha_{j} - \phi_{k} } \right) \times \mathop \prod \limits_{j = 2}^{k} \frac{{\sin \beta_{j} }}{{\sin (\alpha_{j} + \beta_{j} )}}\mathop \prod \limits_{j = 1}^{k - 1} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}}$$
(51)

2. External work due to the surcharge loading and the corresponding seepage forces:

$$W_{{q_{0} }} = qB_{0} \left[ {g_{5} + i\left( {\frac{{\gamma_{\text{w}} }}{{\gamma_{\text{sub}} }}} \right) g_{6} } \right]V_{1} ,$$
(52)

where

$$g_{5} = \frac{{\sin^{2} \beta_{1} }}{{\sin^{2} (\alpha_{1} + \beta_{1} )}}\sum\limits_{i = 1}^{k} {\left[ {\frac{{\sin \alpha_{i} \sin (\alpha_{i} + \beta_{i} )}}{{\sin \beta_{i} }}\sin \left( {\beta_{i} - \mathop \sum \limits_{j = 1}^{i - 1} \alpha_{j} - \phi_{i} } \right) \times \mathop \prod \limits_{j = 2}^{i} \frac{{\sin^{2} \beta_{j} }}{{\sin^{2} (\alpha_{j} + \beta_{j} )}} \times \mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}} } \right]}$$
(53)
$$g_{6} = \frac{{\sin^{2} \beta_{1} }}{{\sin^{2} (\alpha_{1} + \beta_{1} )}}\sum\limits_{i = 1}^{k} {\left[ {\frac{{\sin \alpha_{i} \sin (\alpha_{i} + \beta_{i} )}}{{\sin \beta_{i} }}\cos \left( {\beta_{i} - \mathop \sum \limits_{j = 1}^{i - 1} \alpha_{j} - \phi_{i} } \right) \times \mathop \prod \limits_{j = 2}^{i} \frac{{\sin^{2} \beta_{j} }}{{\sin^{2} (\alpha_{j} + \beta_{j} )}} \times \mathop \prod \limits_{j = 1}^{i - 1} \frac{{\sin (\alpha_{j} + \beta_{j} - \phi_{j} - \phi_{j,j + 1} )}}{{\sin (\beta_{j + 1} - \phi_{j + 1} - \phi_{j,j + 1} )}} } \right]}$$
(54)

3. External work due to the footing load and the corresponding seepage forces:

$$W_{{q_{\text{uS}} }} = q_{\text{uS}} \left[ {\sin (\beta_{1} - \phi_{1} ) + i\left( {\frac{{\gamma_{\text{w}} }}{{\gamma_{\text{sub}} }}} \right) \cos (\beta_{1} - \phi_{1} )} \right]V_{1} .$$
(55)

The total external work is the summation of the three contributions, Eqs. (49), (52), (55):

$$\sum W_{\text{ext}} = W_{\text{rockmass}} + W_{{q_{0} }} + W_{{q_{\text{uS}} }} .$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlKhafaji, H., Imani, M. & Fahimifar, A. Ultimate Bearing Capacity of Rock Mass Foundations Subjected to Seepage Forces Using Modified Hoek–Brown Criterion. Rock Mech Rock Eng 53, 251–268 (2020). https://doi.org/10.1007/s00603-019-01905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01905-6

Keywords

Navigation