Skip to main content
Log in

The Influence of Crack-Face Normal and Shear Stress Loading on Hydraulic Fracture-Tip Singular Plastic Fields

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

We investigated the singular plastic fields at the crack tip of a fracture that is loaded with normal and shear loads due to a viscous flow in a hydraulic fracturing. The level of the expected shear load in comparison with the normal load is examined. The lubrication flow and plastic deformation were decoupled assuming that the relation between applied shear load and normal load follows a linear friction-type relation. This assumption allows to investigate extreme bounds of the solution. Both the applied normal and shear loads are assumed to exhibit singular behavior near the tip which is consistent at the fracture surfaces with the plastic singular stress fields that are investigated. The fractured material is assumed to obey a non-associative Drucker–Prager solid with power law hardening response. The singular values and the corresponding fields were determined over a range of material parameters. For both von Mises material and associative Drucker–Prager material, we found that the level of singularity is given by 1/n where n is the power coefficient of the hardening relation. This level of singularity is stronger than the HRR value, 1/(n + 1), which has been determined for traction free crack surfaces. We found that the shear loading does not influence the level of singularity but it changes the shape of the developed plastic zones with the emergence of a boundary layer near the fracture surface. Deviation from material associativity produces consistent small increases in the level of singularity. The near-tip stress, strain and displacement profiles are illustrated for a few representative cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi JI, Detournay E (2008) Plane strain propagation of a hydraulic fracture in a permeable rock. Eng Fract Mech 75(16):4666–4694

    Article  Google Scholar 

  • Ben-Aoun ZEA, Pan J (1993) Effects of elasticity and pressure sensitive yielding on plane-stress crack-tip fields. Eng Fract Mech 44:649–661

    Article  Google Scholar 

  • Bigoni D, Radi E (1993) Mode I crack propagation in elastic–plastic pressure-sensitive materials. Int J Solids Struct 30(7):899–919

    Article  Google Scholar 

  • Bunger AP, Detournay D (2008) Experimental validation of the tip asymptotics for a fluid-driven crack. J Mech Phys Solids 56(11):3101–3115

    Article  Google Scholar 

  • Bunger AP, Detournay E, Garagash DI (2005) Toughness-dominated hydraulic fracture with leak-off. Int J Fract 134:175–190

    Article  Google Scholar 

  • Carbonell R, Desroches J, Detournay E (1999) A comparison between a semi-analytical and a numerical solution of a two-dimensional hydraulic fracture. Int J Solids Struct 36:4869–4888

    Article  Google Scholar 

  • Chowdhury SR, Narasimhan R (2000) A finite element analysis of stationary crack tip fields in a pressure sensitive constrained ductile layer. Int J Solids Struct 37:3079–3100

    Article  Google Scholar 

  • Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson JRA, Thiercelin M, Cheng A (1994a) The crack tip region in hydraulic fracturing. Proc R Soc Lond A 447:39–48

    Article  Google Scholar 

  • Desroches J, Lenoach B, Papanastasiou P, Thiercelin M (1994b) On the modelling of near tip processes in hydraulic fractures. Int J Rock Mech Min Sci Geomech Abstr 30(7):1127–1134

    Google Scholar 

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45

    Article  Google Scholar 

  • Dong P, Pan J (1991) Elastic–plastic analysis of cracks in pressure sensitive materials. Int J Solids Struct 28:1113–1127

    Article  Google Scholar 

  • Durban D (1999) Friction and singularities in steady penetration. In: Durban D, Pearson JRA (eds) Non-linear singularities in deformation and flow. Kluwer Academic Publishers, Dordrecht, pp 141–154

    Chapter  Google Scholar 

  • Durban D, Papanastasiou P (2003) Singular crack-tip fields for pressure sensitive solids. Int J Fract 119:47–63

    Article  Google Scholar 

  • Garagash DI (2006) Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Int J Solids Struct 43:5811–5835

    Article  Google Scholar 

  • Garagash DI, Detournay E (1999) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67(1):183–192

    Article  Google Scholar 

  • Garagash DI, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67:183–192

    Article  Google Scholar 

  • Garagash DI, Detournay E (2005) Plane-strain propagation of a fluid-driven fracture: small toughness solution. ASME J Appl Mech 72(6):916–928

    Article  Google Scholar 

  • Garagash DI, Detournay E, Adachi JI (2011) Multiscale tip asymptotics in hydraulic fracture with leak-off. J Fluid Mech 669:260–297

    Article  Google Scholar 

  • Hutchinson JW (1968a) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31

    Article  Google Scholar 

  • Hutchinson JW (1968b) Plastic stress and strain fields at a crack tip. J Mech Phys Solids 16:337–347

    Article  Google Scholar 

  • Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford Press, New York

    Google Scholar 

  • Lecampion B, Detournay E (2007) An implicit algorithm for the propagation of hydraulic fracture with a fluid lag. Comput Methods Appl Mech Eng 196:4863–4880

    Article  Google Scholar 

  • Li FZ, Pan J (1990) Plane-strain crack-tip fields for pressure-sensitive dilatant materials. J Appl Mech 57:40–49

    Article  Google Scholar 

  • Nakamura T, Parks DM (1990) Three-dimensional crack front fields in a thin ductile plate. J Mech Phys Solids 38:787–812

    Article  Google Scholar 

  • Narasimhan R, Rosakis AJ (1990) Three-dimensional effects near a crack tip in a ductile 3PB specimen. Part 1: a numerical investigation. J Appl Mech 57:607–617

    Article  Google Scholar 

  • Pan J (1990) Asymptotic analysis of a crack in a power-law material under combined in-plane and out-of-plane shear loading conditions. J Mech Phys Solids 38(2):133–159

    Article  Google Scholar 

  • Pan J, Shih CF (1992) Elastic–plastic analysis of combined mode I, II and III crack-tip fields under small-scale yielding conditions. Int J Solids Struct 29(22):2795–2814

    Article  Google Scholar 

  • Papanastasiou P (1997) The influence of plasticity in hydraulic fracturing. Int J Fract 84:61–97

    Article  Google Scholar 

  • Papanastasiou P (1999) The effective fracture toughness in hydraulic fracturing. Int J Fract 96:127–147

    Article  Google Scholar 

  • Papanastasiou P, Durban D (2001) Singular plastic fields in non-associative pressure sensitive solids. Int J Solids Struct 38:1539–1550

    Article  Google Scholar 

  • Papanastasiou P, Durban D (2017) Singular crack-tip plastic fields in Tresca and Mohr–Coulomb solids. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2017.12.018

    Article  Google Scholar 

  • Papanastasiou P, Thiercelin M (1993) Influence of inelastic rock behaviour in hydraulic fracturing. Int J Rock Mech Min Sci Geomech Abstr 30:1241–1247

    Article  Google Scholar 

  • Papanastasiou P, Durban D, Lenoach B (2003) Singular plastic fields in wedge indentation in non-associative, pressure-sensitive solids. Int J Solids Struct 40:2521–2534

    Article  Google Scholar 

  • Radi E, Bigoni D, Loret B (2002) Steady crack growth in elastic–plastic fluid-saturated porous media. Int J Plast 18:345–358

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power law hardening material. J Mech Phys Solids 16:1–12

    Article  Google Scholar 

  • Savitski A, Detournay E (2001) Propagation of a fluid-driven penny-shape fracture in an impermeable rock: asymptotic solutions. Int J Solids Struct 39:6311–6337

    Article  Google Scholar 

  • Shih CF (1974) Small-scale yielding analysis of mixed-mode plane strain crack problems. Fract Anal ASTM STP 560:187–210

    Google Scholar 

  • Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Subramanya HY, Viswanath S, Narasimhan R (2005) A three-dimensional numerical study of mixed mode (I and II) crack tip fields in elastic–plastic solids. Int J Fract 136:167–185

    Article  Google Scholar 

  • Subramanya HY, Viswanath S, Narasimhan R (2007) A three-dimensional numerical study of mode I crack tip fields in pressure sensitive plastic solids. Int J Solids Struct 44:1863–1879

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Wrobel M, Mishuris G, Piccolroaz A (2017) Energy release rate in hydraulic fracture: can we neglect an impact of the hydraulically induced shear stress? Int J Eng Sci (in press)

  • Yuan H, Lin G (1993) Elastoplastic crack analysis for pressure-sensitive dilatant materials. Part I: higher-order solutions and two parameter characterization. Int J Fract 61:295–330

    Article  Google Scholar 

  • Zhang X, Jeffrey R, Detournay E (2005) Propagation of hydraulic fracture parallel to a free-surface. Int J Numer Anal Methods Geomech 29:1317–1340

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Cyprus and the Cyprus Research Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Papanastasiou.

Appendix I: Numerical Solution

Appendix I: Numerical Solution

The system of governing Eqs. (33) and (40), along with boundary conditions (41), is solved numerically by a discretization procedure using the Galerkin finite element method (Strang and Fix 1973). The first step of this scheme is to discretize the space domain replacing the original set of PDE with a set of ODE. Considering the nonlinearity of equation system, the solution is obtained with Newton’s method. The system can be put in a compact form:

$$ R\left( {\tilde{\sigma }_{rr} ,\tilde{\sigma }_{\theta \theta } ,\tilde{\sigma }_{r\theta } ,\tilde{u},\tilde{v}} \right) = 0 $$
(45)

where R is the vector of residuals. Newton’s method is an iterative method where, given an initial approximation y(0) to the solution y, the (+ 1) th approximation is obtained from the m th by solving

$$ J(y(m))[y_{(m + 1)} - y_{(m)} ] = - R\left( {y_{(m)} } \right) $$
(46)

where J is the Jacobian matrix which contains the partial derivatives of the residuals R with respect to the unknowns, i.e., \( (J_{ij} = {{\partial R_{i} } \mathord{\left/ {\vphantom {{\partial R_{i} } {\partial y_{j} }}} \right. \kern-0pt} {\partial y_{j} }}) \). The derivatives are evaluated at y = y (m). The integer m is the iteration counter.

The unknown variables are expressed in terms of their nodal values as

$$ \tilde{\sigma }_{rr} = \sum\limits_{j = 1}^{N} {\tilde{\sigma }_{rr}^{j} } \varPhi^{j} \quad \tilde{\sigma }_{\theta \theta } = \sum\limits_{j = 1}^{N} {\tilde{\sigma }_{\theta \theta }^{j} } \varPhi^{j} \quad \tilde{\sigma }_{r\theta } = \sum\limits_{j = 1}^{N} {\tilde{\sigma }_{r\theta }^{j} } \varPhi^{j} \quad \tilde{u} = \sum\limits_{j = 1}^{N} {\tilde{u}^{j} } \varPhi^{j} \quad \tilde{v} = \sum\limits_{j = 1}^{N} {\tilde{v}^{j} } \varPhi^{j} $$
(47)

where Φj are the approximation functions (basis functions) over the element. For these approximations the Lagrange quadratic interpolation functions were used.

The Galerkin-weighted residuals of the system equations are formed by, respectively, multiplying them by each basis function Φι in turn and then integrating over the entire space domain [0,π]. At each step of Newton’s iteration Eq. (46) can be written in an expanded form

$$ \left| {\begin{array}{*{20}c} {\partial R_{i}^{1} /\partial \tilde{\sigma }_{rr} } & {\partial R_{i}^{1} /\partial \tilde{\sigma }_{\theta \theta } } & {\partial R_{i}^{1} /\partial \tilde{\sigma }_{r\theta } } & {\partial R_{i}^{1} /\partial \tilde{u}} & {\partial R_{i}^{1} /\partial \tilde{v}} \\ {\partial R_{i}^{2} /\partial \tilde{\sigma }_{rr} } & {\partial R_{i}^{2} /\partial \tilde{\sigma }_{\theta \theta } } & {\partial R_{i}^{2} /\partial \tilde{\sigma }_{r\theta } } & {\partial R_{i}^{2} /\partial \tilde{u}} & {\partial R_{i}^{2} /\partial \tilde{v}} \\ {\partial R_{i}^{3} /\partial \tilde{\sigma }_{rr} } & {\partial R_{i}^{3} /\partial \tilde{\sigma }_{\theta \theta } } & {\partial R_{i}^{3} /\partial \tilde{\sigma }_{r\theta } } & {\partial R_{i}^{3} /\partial \tilde{u}} & {\partial R_{i}^{3} /\partial \tilde{v}} \\ {\partial R_{i}^{4} /\partial \tilde{\sigma }_{rr} } & {\partial R_{i}^{4} /\partial \tilde{\sigma }_{\theta \theta } } & {\partial R_{i}^{4} /\partial \tilde{\sigma }_{r\theta } } & {\partial R_{i}^{4} /\partial \tilde{u}} & {\partial R_{i}^{4} /\partial \tilde{v}} \\ {\partial R_{i}^{5} /\partial \tilde{\sigma }_{rr} } & {\partial R_{i}^{5} /\partial \tilde{\sigma }_{\theta \theta } } & {\partial R_{i}^{5} /\partial \tilde{\sigma }_{r\theta } } & {\partial R_{i}^{5} /\partial \tilde{u}} & {\partial R_{i}^{5} /\partial \tilde{v}} \\ \end{array} } \right|^{m} \left| {\begin{array}{*{20}c} {\delta \tilde{\sigma }_{rr} } \\ {\delta \tilde{\sigma }_{rr} } \\ {\delta \tilde{\sigma }_{rr} } \\ {\delta \tilde{u}} \\ {\delta \tilde{v}} \\ \end{array} } \right|^{(m + 1)} = - \,\left| {\begin{array}{*{20}c} {R_{i}^{1} } \\ {R_{i}^{2} } \\ {R_{i}^{3} } \\ {R_{i}^{4} } \\ {R_{i}^{5} } \\ \end{array} } \right|^{m} $$
(48)

The derivation of Galerkin-weighted residuals Ri and their partial derivatives \( (J_{ij} = {{\partial R_{i} } \mathord{\left/ {\vphantom {{\partial R_{i} } {\partial y_{j} }}} \right. \kern-0pt} {\partial y_{j} }}) \) which form the elements of the Jacobian matrix is given below.

The Galerkin-weighted residuals and the corresponding (i-th row, j-th column) element of Jacobian of Eq. (33a) are given by

$$ R_{i}^{1} = \int\limits_{{0}}^{{\pi}} {\left[ {(s + 1)\tilde{\sigma }_{rr} + \tilde{\sigma }^{\prime}_{r\theta } - \tilde{\sigma }_{\theta \theta } } \right]} \varPhi^{i} {\text{d}}\theta = 0 $$
(49)
$$ \frac{{\partial R_{i}^{1} }}{{\partial \tilde{\sigma }_{rr} }} = \int\limits_{0}^{\pi } {(s + 1)} \varPhi^{i} \varPhi^{j} {\text{d}}\theta \quad \frac{{\partial R_{i}^{1} }}{{\partial \tilde{\sigma }_{\theta \theta } }} = - \int\limits_{0}^{\pi } {\varPhi^{i} \varPhi^{j} } {\text{d}}\theta \quad \frac{{\partial R_{i}^{1} }}{{\partial \tilde{\sigma }_{r\theta } }} = \int\limits_{0}^{\pi } {\varPhi^{i} \frac{{\partial \varPhi^{j} }}{\partial \theta }} {\text{d}}\theta \quad \frac{{\partial R_{i}^{1} }}{{\partial \tilde{u}}} = 0\quad \frac{{\partial R_{i}^{1} }}{{\partial \tilde{v}}} = 0 $$

The Galerkin-weighted residual and the corresponding (i-th row, j-th column) element of Jacobian of Eq. (33b) are given by

$$ R_{i}^{2} = \int\limits_{0}^{\pi } {\left[ {(s + 2)\tilde{\sigma }_{r\theta } + \tilde{\sigma }^{\prime}_{\theta \theta } } \right]\varPhi^{i} {\text{d}}\theta } = 0 $$
(50)
$$ \frac{{\partial R_{i}^{2} }}{{\partial \tilde{\sigma }_{rr} }} = 0\quad \frac{{\partial R_{i}^{1} }}{{\partial \tilde{\sigma }_{\theta \theta } }} = \int\limits_{0}^{\pi } {\varPhi^{i} \frac{{\partial \varPhi^{j} }}{\partial \theta }} {\text{d}}\theta \quad \frac{{\partial R_{i}^{2} }}{{\partial \tilde{\sigma }_{r\theta } }} = \int\limits_{0}^{\pi } {(s + 2)} \varPhi^{i} \varPhi^{j} {\text{d}}\theta \quad \frac{{\partial R_{i}^{2} }}{{\partial \tilde{u}}} = 0\quad \frac{{\partial R_{i}^{2} }}{{\partial \tilde{v}}} = 0 $$

The Galerkin-weighted residual and the corresponding (i-th row, j-th column) element of Jacobian of Eq. (40c) are given by

$$ R_{i}^{3} = \int\limits_{0}^{\pi } {\left\{ {\tilde{u^{\prime}} + ns\tilde{v} - \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\left[ {\frac{{3\tilde{\sigma }_{r\theta } }}{{\tilde{q}}}} \right]} \right\}} \varPhi^{i} {\text{d}}\theta $$
(51)
$$ \frac{{\partial R_{i}^{3} }}{{\partial \tilde{\sigma }_{rr} }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{rr} }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{g}^{2} }}\left[ {\frac{{3\tilde{\sigma }_{r\theta } }}{{\tilde{q}}}} \right] + \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{3\tilde{\sigma }_{r\theta } \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{3} }}{{\partial \tilde{\sigma }_{\theta \theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{\theta \theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{{3\tilde{\sigma }_{r\theta } }}{{\tilde{q}}}} \right] + \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{3\tilde{\sigma }_{r\theta } \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{q}^{2} }}} \right\}\varPhi^{j} } \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{3} }}{{\partial \tilde{\sigma }_{r\theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{r\theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{{3\tilde{\sigma }_{r\theta } }}{{\tilde{q}}}} \right] - \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{3\tilde{q} - 3\tilde{\sigma }_{r\theta } \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$

where

$$ \begin{aligned} \frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{rr} }} & = \left( {\frac{3}{{1 - \eta^{2} /9}}} \right)^{1/2} \frac{{\sigma_{rr} - \sigma_{\theta \theta } }}{{\left[ {\left( {\frac{{\sigma_{rr} - \sigma_{\theta \theta } }}{2}} \right)^{2} + \sigma_{r\theta }^{2} } \right]^{1/2} }} \\ \frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{\theta \theta } }} & = - \left( {\frac{3}{{1 - \eta^{2} /9}}} \right)^{1/2} \frac{{\sigma_{rr} - \sigma_{\theta \theta } }}{{\left[ {\left( {\frac{{\sigma_{rr} - \sigma_{\theta \theta } }}{2}} \right)^{2} + \sigma_{r\theta }^{2} } \right]^{1/2} }} \\ \frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{r\theta } }} & = \left( {\frac{3}{{1 - \eta^{2} /9}}} \right)^{1/2} \frac{{\sigma_{r\theta } }}{{\left[ {\left( {\frac{{\sigma_{rr} - \sigma_{\theta \theta } }}{2}} \right)^{2} + \sigma_{r\theta }^{2} } \right]^{1/2} }} \\ \end{aligned} $$
$$ \begin{aligned} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{rr} }} & = \left( {1 - \frac{\mu \eta }{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{rr} }} + \frac{\mu }{2} \\ \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{\theta \theta } }} & = \left( {1 - \frac{\mu \eta }{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{\theta \theta } }} + \frac{\mu }{2} \\ \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{r\theta } }} & = \left( {1 - \frac{\mu \eta }{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{r\theta } }} \\ \end{aligned} $$

and

$$ \begin{aligned} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{rr} }} & = \left( {1 - \frac{{\eta^{2} }}{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{rr} }} + \frac{\eta }{2} \\ \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{\theta \theta } }} & = \left( {1 - \frac{{\eta^{2} }}{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{\theta \theta } }} + \frac{\eta }{2} \\ \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{r\theta } }} & = \left( {1 - \frac{{\eta^{2} }}{9}} \right)\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{r\theta } }} \\ \end{aligned} $$
$$ \frac{{\partial R_{i}^{3} }}{{\partial \tilde{u}}} = \int\limits_{0}^{\pi } {\frac{1}{2}} \frac{{\partial \varPhi^{j} }}{\partial \theta }\varPhi^{i} {\text{d}}\theta \quad \frac{{\partial R_{i}^{3} }}{{\partial \tilde{v}}} = \int\limits_{0}^{\pi } {\frac{1}{2}} ns\varPhi^{j} \varPhi^{i} {\text{d}}\theta $$

The Galerkin-weighted residual and the corresponding (i-th row, j-th column) element of Jacobian of Eq. (40a) are given by

$$ R_{i}^{4} = \int\limits_{0}^{\pi } {\left\{ {(ns + 1)\tilde{u} - \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\left[ {\frac{\eta }{2} + \frac{3}{{2\tilde{q}}}\frac{{\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } }}{2}} \right]} \right\}} \varPhi^{i} {\text{d}}\theta $$
(52)
$$ \frac{{\partial R_{i}^{4} }}{{\partial \tilde{\sigma }_{rr} }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{rr} }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{{2\tilde{q}}}\frac{{\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } }}{2} + \frac{\eta }{2}} \right] - \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{\tilde{q} - (\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{4} }}{{\partial \tilde{\sigma }_{\theta \theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{\theta \theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{{2\tilde{q}}}\frac{{\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } }}{2} + \frac{\eta }{2}} \right] + \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{\tilde{q} + (\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{4} }}{{\partial \tilde{\sigma }_{r\theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{r\theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{{2\tilde{q}}}\frac{{\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } }}{2} + \frac{\eta }{2}} \right] + \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{(\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{4} }}{{\partial \tilde{u}}} = \int\limits_{0}^{\pi } {(ns + 1)\varPhi^{j} } \varPhi^{i} {\text{d}}\theta \quad \frac{{\partial R_{i}^{4} }}{{\partial \tilde{v}}} = 0 $$

The Galerkin-weighted residual and the corresponding (i-th row, j-th column) element of Jacobian of Eq. (40b) are given by

$$ R_{i}^{5} = \int\limits_{0}^{\pi } {\left\{ {\tilde{u} + \tilde{v}^{\prime} - \frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\left[ {\frac{\eta }{2} + \frac{3}{{2\tilde{q}}}\frac{{\tilde{\sigma }_{\theta \theta } - \tilde{\sigma }_{rr} }}{2}} \right]} \right\}} \varPhi^{i} {\text{d}}\theta $$
(53)
$$ \frac{{\partial R_{i}^{5} }}{{\partial \tilde{\sigma }_{rr} }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{rr} }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{4}\frac{{(\tilde{\sigma }_{\theta \theta } - \tilde{\sigma }_{rr} )}}{{\tilde{q}}} + \frac{\eta }{2}} \right] + \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{\tilde{q} - (\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{rr} }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{5} }}{{\partial \tilde{\sigma }_{\theta \theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{\theta \theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{4}\frac{{(\tilde{\sigma }_{\theta \theta } - \tilde{\sigma }_{rr} )}}{{\tilde{q}}} + \frac{\eta }{2}} \right] - \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{\tilde{q} + (\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{\theta \theta } }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{5} }}{{\partial \tilde{\sigma }_{r\theta } }} = \int\limits_{0}^{\pi } {\left\{ { - \frac{{(n + 1)\tilde{\sigma }_{\text{e}}^{n} \frac{{\partial \tilde{\sigma }_{\text{e}} }}{{\partial \tilde{\sigma }_{r\theta } }}\tilde{g} - \tilde{\sigma }_{\text{e}}^{n + 1} \frac{{\partial \tilde{g}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{g}^{2} }}\left[ {\frac{3}{4}\frac{{(\tilde{\sigma }_{\theta \theta } - \tilde{\sigma }_{rr} )}}{{\tilde{q}}} + \frac{\eta }{2}} \right] - \frac{3}{4}\frac{{\tilde{\sigma }_{\text{e}}^{n + 1} }}{{\tilde{g}}}\frac{{(\tilde{\sigma }_{rr} - \tilde{\sigma }_{\theta \theta } )\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{r\theta } }}}}{{\tilde{q}^{2} }}} \right\}} \varPhi^{j} \varPhi^{i} {\text{d}}\theta $$
$$ \frac{{\partial R_{i}^{5} }}{{\partial \tilde{u}}} = \int\limits_{0}^{\pi } {\varPhi^{j} } \varPhi^{i} {\text{d}}\theta \quad \frac{{\partial R_{i}^{5} }}{{\partial \tilde{v}}} = \int\limits_{0}^{\pi } {\frac{{\partial \varPhi^{j} }}{\partial \theta }} \varPhi^{i} {\text{d}}\theta $$

The set of linear Eqs. (48) can be solved repeatedly until the iteration converges to the solution, \( y = \tilde{\sigma }_{rr} ,\tilde{\sigma }_{\theta \theta } ,\tilde{\sigma }_{r\theta } ,\tilde{u},\tilde{v} \) of equation set (45). Convergence is achieved when the Euclidean norm of the solution update, δy, approximately vanishes. For the unknown singularity s is we use the HRR value as an initial guess to the problem. Convergence is achieved and for values of s that deviate from the correct value of the singularity, but the eigenvectors exhibit oscillatory behavior from node to node. This observation was used to search for the correct singularity by moving s to the direction that minimizes the oscillation. The results and efficiency of the algorithm were tested in earlier studies by Papanastasiou and Durban (2001) for the case of von Mises and associative Drucker–Prager materials where the singularity is a priori known to be the HRR singularity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papanastasiou, P., Durban, D. The Influence of Crack-Face Normal and Shear Stress Loading on Hydraulic Fracture-Tip Singular Plastic Fields. Rock Mech Rock Eng 51, 3191–3203 (2018). https://doi.org/10.1007/s00603-018-1437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1437-x

Keywords

Navigation