Skip to main content
Log in

A Rigid Particle Model for Rock Fracture Following the Voronoi Tessellation of the Grain Structure: Formulation and Validation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

It is known that rigid circular particle models proposed in the literature do not properly reproduce the rock friction angle and the rock tensile strength to compressive strength ratio. A 2D rigid particle model is here presented which tries to overcome these issues while keeping the simplicity and the reduced computational costs characteristic of circular particle models. A particle generation algorithm is adopted which generates polygonal shape particles based on the Laguerre–Voronoi diagrams of the circular particle gravity centres. Several parametric studies are presented to show the influence of the micromechanical properties on both the macroscopic elastic and strength properties. It is shown that a good agreement with the known rock direct tensile to indirect tensile test ratio requires the incorporation of bilinear softening contact laws under tension and shear. Finally, the proposed model is validated against known triaxial and Brazilian tests of a granite rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(\bar{E}_{{}}\) :

Young’s modulus of the equivalent continuum material

\(\eta_{{}}\) :

Contact shear stiffness to contact normal stiffness ratio

\(\sigma_{{n{ \cdot }t}}\) :

Maximum contact tensile stress

\(\tau_{{}}\) :

Maximum contact cohesion stress

\(\mu_{\text{c}}\) :

Contact frictional term

\(G_{{{\text{f}}{ \cdot }{\text{n}}}}\) :

Contact tensile fracture energy

\(G_{{{\text{f}}{ \cdot }{\text{s}}}}\) :

Contact shear fracture energy

\(\bar{W}_{{}}\) :

Contact interface width given by the Voronoi cell edge length

\(E_{{}}\) :

Young’s modulus

\(\upsilon_{{}}\) :

Poisson’s coefficient

\(\sigma_{\text{c}}\) :

Uniaxial compressive strength

\(\sigma_{{{\text{t}}.{\text{dir}}}}\) :

Direct tensile strength

\(\sigma_{{{\text{t}}.{\text{ind}}}}\) :

Indirect tensile strength through Brazilian test

c :

Cohesion

φ :

Friction angle

References

  • Azevedo N, Lemos J (2005) A generalized rigid particle contact model for fracture analysis. Int J Numer Anal Met 29:269–285

    Article  Google Scholar 

  • Azevedo N, Lemos J (2013) A 3d generalized rigid particle contact model for rock fracture. Integr Comput Aid E 30(2):277–300

    Google Scholar 

  • Berton S, Bolander J (2006) Crack band model of fracture in irregular lattices. Comput Method Appl M 195(52):7172–7181

    Article  Google Scholar 

  • Bieniawski Z (1967) Mechanism of brittle fracture of rock. Part I—theory of the fracture process. Int J Rock Mech Min 4:395–406

    Article  Google Scholar 

  • Bolander J, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Appl Fr 61(8):569–591

    Google Scholar 

  • Brace W, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953

    Article  Google Scholar 

  • Cho N, Martin C, Sego DC (2010) A clumped particle model for rock. Int J Rock Mech Min 44:997–1010

    Article  Google Scholar 

  • Cundall P (1987) Distinct element models for rock and soil structure. In: Brown ET (ed) Analytical and computational methods in engineering rock mechanics, Chapter 4, Allen & Unwin, London, pp 129–163

  • Cundall P (2001) Discontinuous future for numerical modelling in Geomechanics? P I Civil Eng Geotec 149(1):41–47

    Article  Google Scholar 

  • Cusatis P, Bazant Z, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Method Appl M 195:7154–7171

    Article  Google Scholar 

  • Diederichs M (2000) Instability of hard rock masses: the role of tensile damage and relaxation. PhD Dissertation, University of Waterloo

  • Diederichs M (2003) Rock fracture collapse under low confinement conditions. Rock Mech Rock Eng 36:339–381

    Article  Google Scholar 

  • Erarslan N, Williams D (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min 49:21–30

    Article  Google Scholar 

  • Hentz S, Daudeville L, Donze V (2004) Identification and Validation of a discrete element model for concrete. J Eng Mech Asce 6:709–719

    Article  Google Scholar 

  • Hohberg J (1992) A joint element for the nonlinear dynamic analysis of arch dams. PhD Dissertation. Institute of Structural Engineering, ETH, Zurich, Switzerland

  • Kazerani T (2011) Micromechanical study of rock fracture and fragmentation under dynamic loads using discrete element method. PhD Dissertation, École Polytechnique Fédérale de Lausanne, Switzerland

  • Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int J Numer Anal Met 34(18):1877–1895

    Article  Google Scholar 

  • Klanphumeesri S (2010) Direct tension tests of rock specimens. Msc Thesis, Suraranee University of Technology, Thailand

  • Lan H, Martin C, Hu B (2010) Effect of heterogeneity of brittle rock on micromechanical extensile behaviour during compression loading. J Geophys Res 1:14–115

    Google Scholar 

  • Lilliu J, Van Mier M (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70(7–8):841–927

    Google Scholar 

  • Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min 31(6):643–659

    Article  Google Scholar 

  • Matsuda Y, Iwase Y (2002) Numerical simulation of rock fracture using three-dimensional extended discrete element method. Earth Planets Space 54(367):378

    Google Scholar 

  • Meguro K, Hakuno M (1989) Fracture analysis of concrete structures by the modified distinct element method. Struct Eng/Earthqu Eng JSCE 6(2):283–294

    Google Scholar 

  • Nagai K, Sato Y, Ueda T (2005) Mesoscopic simulation of failure of mortar and concrete by 3D RBSM. J Adv Concr Technol 3(3):385–402

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K (1992) Spatial tesselations. Concepts and applications of Voronoi diagrams, Wiley, New York

  • Potyondy D (2010) A grain based model for rock: approaching the true microstructure. In: Li C et al (eds) Proceedings of Berg Mekanikk i Norden 2010—rock mechanics in the Nordic countries. Konsberg, Norwegian group for rock mechanics, pp 225–234

    Google Scholar 

  • Potyondy D (2012) A flat-jointed bonded-particle material for hard rock. In: Proceeeding of 46th U.S. rock mechanics/geomechanics symposium, Chicago, USA, pp 24–27

  • Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min 41:1329–1364

    Article  Google Scholar 

  • Potyondy D, Cundall P, Lee C (1996) Modelling rock using bonded assemblies of circular particles. In: Aubertin M et al (eds) Proceedings of the 2nd North American rock mechanics symposium. Balkema, Rotterdam, pp 1937–1944

    Google Scholar 

  • Rokugo K, Iwasa M, Susuki T, Koyanagi W (1989) Testing methods to determine tensile strain softening curve and fracture energy of concrete. In: Mihasi H et al (eds) Fracture toughness and fracture energy: test methods for concrete and rock. Balkema, Rotterdam, pp 153–163

    Google Scholar 

  • Schlangen E, Garboczi E (1997) Fracture simulations of concrete using lattice models: Computational aspects. Eng Fract Mech 319(2/3):332–357

    Google Scholar 

  • UDEC (2004) Universal Distinct Element Code, Version 4.0, Itasca consulting group, Minneapolis

  • Underwood P (1983) Dynamic relaxation. In: Belytschko T, Hughes T (eds) Computation methods for transient analysis. North-Holland, New York, pp 246–265

    Google Scholar 

  • Vasconcelos G (2005) Investigação experimental na mecânica da alvenaria de pedra: Caracterização de granitos e comportamento de paredes antigas de alvenaria de pedra. PhD Dissertation. Univesidade do Minho, Portugal (in Portuguese)

  • Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min 46(1124):1135

    Google Scholar 

Download references

Acknowledgments

This work was developed within the research project PTDC/ECM/114492/2009 funded by the Portuguese Foundation of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Monteiro Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro Azevedo, N., Candeias, M. & Gouveia, F. A Rigid Particle Model for Rock Fracture Following the Voronoi Tessellation of the Grain Structure: Formulation and Validation. Rock Mech Rock Eng 48, 535–557 (2015). https://doi.org/10.1007/s00603-014-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0601-1

Keywords

Navigation