Skip to main content
Log in

Universality for Three Bosons with Large, Negative Effective Range: Aspects and Addenda

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Resummed-range Effective Field Theory is the consistent non-relativistic Effective Field Theory of point interactions in systems with large two-body scattering length a and an effective range \(r_0\) large in magnitude but negative. Its leading order is non-perturbative, and its observables depend only on the dimensionless ratio \(\xi :=2r_0/a\) once \(|r_0|\) is chosen as base unit. This presentation highlights aspects for three identical spinless bosons and adds details to a previous discussion (Griesshammer and van Kolck in Eur Phys J A 59:289, 2023). At leading order, no three-body interaction is needed. A ground state exists only in the range \(0.366\ldots \ge \xi \ge -8.72\ldots \), and excited states display self-similarity and Discrete Scale Invariance, with small corrections for nonzero \(r_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data underlying this work are available in full upon request from the author.

References

  1. J. van de Kraats, D.J.M. Ahmed-Braun, J.L. Li, S.J.J.M.F. Kokkelmans, Phys. Rev. A 107, 023301 (2023). https://doi.org/10.1103/PhysRevA.107.023301. arXiv:2210.14200 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  2. D.S. Petrov, Phys. Rev. Lett. 93, 143201 (2004). https://doi.org/10.1103/PhysRevLett.93.143201. arXiv:cond-mat/0404036 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  3. I. Matuschek, V. Baru, F.-K. Guo, C. Hanhart, Eur. Phys. J. A 57, 101 (2021). https://doi.org/10.1140/epja/s10050-021-00413-y. arXiv:2007.05329 [hep-ph]

    Article  ADS  Google Scholar 

  4. A.M. Gasparyan, J. Haidenbauer, C. Hanhart, Phys. Rev. C 85, 015204 (2012). https://doi.org/10.1103/PhysRevC.85.015204. arXiv:1111.0513 [nucl-th]

    Article  ADS  Google Scholar 

  5. J. Haidenbauer, U.-G. Meißner, S. Petschauer, Nucl. Phys. A 954, 273 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.006. arXiv:1511.05859 [nucl-th]

    Article  ADS  Google Scholar 

  6. J. Haidenbauer, U.-G. Meißner, Phys. Lett. B 829, 137074 (2022). https://doi.org/10.1016/j.physletb.2022.137074. arXiv:2109.11794 [nucl-th]

    Article  Google Scholar 

  7. J.B. Habashi, S. Sen, S. Fleming, U. van Kolck, Annals Phys. 422, 168283 (2020). https://doi.org/10.1016/j.aop.2020.168283. arXiv:2007.07360 [nucl-th]

    Article  Google Scholar 

  8. J.B. Habashi, S. Fleming, U. van Kolck, Eur. Phys. J. A 57, 169 (2021). https://doi.org/10.1140/epja/s10050-021-00452-5. arXiv:2012.14995 [hep-ph]

    Article  ADS  Google Scholar 

  9. U. van Kolck, Symmetry 14, 1884 (2022). https://doi.org/10.3390/sym14091884. arXiv:2209.08432 [hep-ph]

    Article  ADS  Google Scholar 

  10. H.W. Griesshammer, U. van Kolck, Eur. Phys. J. A 59, 289 (2023). https://doi.org/10.1140/epja/s10050-023-01196-0. arXiv:2308.01394 [nucl-th]

    Article  ADS  Google Scholar 

  11. V. Efimov, Phys. Lett. B 33, 563 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  ADS  Google Scholar 

  12. V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  13. V. Efimov, Nucl. Phys. A 210, 157 (1973). https://doi.org/10.1016/0375-9474(73)90510-1

    Article  ADS  Google Scholar 

  14. V. Efimov, Sov. J. Nucl. Phys. 29, 546 (1979)

    Google Scholar 

  15. H.-W. Hammer, S. König, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020). https://doi.org/10.1103/RevModPhys.92.025004. arXiv:1906.12122 [nucl-th]

    Article  ADS  Google Scholar 

  16. D.R. Phillips, S.R. Beane, T.D. Cohen, Ann. Phys. 263, 255 (1998). https://doi.org/10.1006/aphy.1997.5771.arXiv:hep-th/9706070

  17. S.R. Beane, T.D. Cohen, D.R. Phillips, Nucl. Phys. A 632, 445 (1998). https://doi.org/10.1016/S0375-9474(98)00007-4. arXiv:nucl-th/9709062

    Article  ADS  Google Scholar 

  18. C. J. Fewster, J. Phys. A 28 (1995) 110 https://doi.org/10.1088/0305-4470/28/4/031. arXiv:hep-th/9412050

  19. D.R. Phillips, T.D. Cohen, Phys. Lett. B 390, 7 (1997). https://doi.org/10.1016/S0370-2693(96)01411-6. arXiv:nucl-th/9607048

  20. M. Gattobigio, M. Göbel, H.-W. Hammer, A. Kievsky, Few B. Syst. 60, 40 (2019). https://doi.org/10.1007/s00601-019-1504-1. arXiv:1903.05493 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  21. H.W. Grießhammer and U. van Kolck, in preparation

Download references

Acknowledgements

It continues to be a pleasure to collaborate with Ubirajara van Kolck. I am grateful to the organisers and participants of EuroFewB 2023 in Mainz for spirited, stimulating and profound discussions, a delightful atmosphere, and for indulging such a topic as the last plenary presentation. Instrumental for this research were the warm hospitality and financial support for stays at IJCLab Orsay and at the Kavli Institute for Theoretical Physics which is supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under award DE-SC0015393.

Author information

Authors and Affiliations

Authors

Contributions

The single author contributed all of the effort to this presentation, and none more. hg.

Corresponding author

Correspondence to Harald W. Grießhammer.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grießhammer, H.W. Universality for Three Bosons with Large, Negative Effective Range: Aspects and Addenda. Few-Body Syst 65, 53 (2024). https://doi.org/10.1007/s00601-024-01923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01923-3

Navigation