Skip to main content
Log in

The \({{\varvec{ppp}}}\) Correlation Function with a Screened Coulomb Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The correlation function is a useful tool to study the interaction between hadrons. The theoretical description of this observable requires the knowledge of the scattering wave function, whose asymptotic part is distorted when two or more particles are charged. For a system of three (or more) particles, with more than two particles asymptotically free and at least two of them charged, the asymptotic part of the wave function is not known in a closed form. In the present study we introduce a screened Coulomb potential and analyze the impact of the screening radius on the correlation function. As we will show, when a sufficiently large screening radius is used, the correlation function results almost unchanged if compared to the case in which the unscreened Coulomb potential is used. This fact allows the use of free asymptotic matching conditions in the solution of the scattering equation simplifying noticeably the calculation of the correlation function. As an illustration we discuss the pp and ppp correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No datasets were generated or analysed during the current study.

References

  1. U.A. Wiedemann, U.W. Heinz, Phys. Rep. 319, 145 (1999)

    Article  ADS  CAS  Google Scholar 

  2. U. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999)

    Article  ADS  CAS  Google Scholar 

  3. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005)

    Article  ADS  CAS  Google Scholar 

  4. L. Fabbietti, V. Mantovani Sarti, and O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. 71, 377 (2021)

  5. S. Acharya et al., ALICE collaboration. Eur. Phys. J. A 59, 145 (2023)

    Article  ADS  CAS  Google Scholar 

  6. S. Acharya et al. (ALICE Collaboration), arXiv:2308.16120 [nucl-ex]

  7. M. Viviani, S. König, A. Kievsky, L.E. Marcucci, B. Singh and O. Vázquez Doce, Phys. Rev. C 108, 064002 (2023)

  8. A. Kievsky, E. Garrido, M. Viviani, L. E. Marcucci, L. Serksnyte, R. Del Grande, arXiv:2310.10428 [nucl-th]

  9. A. Kievsky, M. Viviani, Paolo Barletta, C. Romero-Redondo, and E. Garrido, Phys. Rev. C 81, 034002 (2010)

  10. A. Kievsky, M. Viviani, S. Rosati, Phys. Rev. C 64, 024002 (2001)

    Article  ADS  Google Scholar 

  11. A. Deltuva, A.C. Fonseca, P.U. Sauer, Ann. Rev. Nucl. Part. Sc. 58, 27 (2008)

    Article  ADS  CAS  Google Scholar 

  12. S.L. Yakovlev, arXiv:2206.07374 [nucl-th]

  13. S.E. Koonin, Phys. Lett. B 70, 43 (1977)

    Article  ADS  Google Scholar 

  14. S. Pratt, T. Csorgo, J. Zimanyi, Phys. Rev. C 42, 2646 (1990)

    Article  ADS  CAS  Google Scholar 

  15. S. Mrówczyński, Eur. Phys. J. Spec. Top. 229, 3559 (2020)

    Article  Google Scholar 

  16. S. Acharya et al., ALICE collaboration. Phys. Lett. B 805, 135419 (2020)

    Article  CAS  Google Scholar 

  17. A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani, Annu. Rev. Nucl. Part. Sci. 71, 465 (2021)

    Article  ADS  CAS  Google Scholar 

  18. M.D. Higgins, C.H. Greene, A. Kievsky, and M. Viviani, Phys. Rev. Lett. 125, 052501 (2020)

  19. M.D. Higgins, C.H. Greene, A. Kievsky, and M. Viviani, Phys. Rev. C 103, 024004 (2021)

  20. A. Tumino, G.G. Rapisarda, M. La Cognata et al., Commun. Phys. 6, 106 (2023)

    Article  CAS  Google Scholar 

  21. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. C 100, 034004 (2019)

    Article  ADS  CAS  Google Scholar 

  22. A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, L. Girlanda, Phys. Rev. Lett. 121, 072701 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. B.V. Danilin, T. Rogde, J.S. Vaagen, I.J. Thompson, M.V. Zhukov, Phys. Rev. C 69, 024609 (2004)

    Article  ADS  Google Scholar 

  24. E. Garrido, A. Kievsky, M. Viviani, Phys. Rev. C 90, 014607 (2014)

    Article  ADS  Google Scholar 

  25. M. Fabre de la Ripelle, Ann. Phys. 147, 281 (1983)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. E. Garrido, A. Kievsky, M. Viviani, Few-Body Syst. 57, 1227 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by: Grant PID2022-136992NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe.

Author information

Authors and Affiliations

Authors

Contributions

A.K. and E.G. wrote the main manuscript text and prepared the figures, all authors reviewed the manuscript.

Corresponding author

Correspondence to A. Kievsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kievsky, A., Garrido, E., Viviani, M. et al. The \({{\varvec{ppp}}}\) Correlation Function with a Screened Coulomb Potential. Few-Body Syst 65, 23 (2024). https://doi.org/10.1007/s00601-024-01893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01893-6

Navigation