Skip to main content
Log in

Investigation of the Photoionization Process of Highly Charged Ions Under Non-ideal Classical Plasma Conditions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this manuscript, we suggest a relativistic distorted wave approach for the prediction of structural properties and photoionization cross sections of highly charged ions in a non-ideal classical plasma (NICP) environment. The pseudopotential, obtained from a sequential solution of the Bogolyubov chain equations, is used to describe screened interactions in the plasma. We solve the Dirac equation to obtain wave functions and energies. Detailed calculations are carried out for the photoionization of the highly ionized H-like S\(^{15+}\) ions for an illustrative purpose. The NICP effects on the energies, transition rates, ionization potentials, and photoionization cross sections are investigated. Comparing our results with other available experimental and theoretical data, we find satisfactory agreement. Apart from its fundamental importance, the present study has implications for a range of fields, including astrophysics, nuclear fusion and laboratory plasma experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Belkhiri, C.J. Fontes, M. Poirier, Phys. Rev. A 92, 032501 (2015)

    ADS  Google Scholar 

  2. L.G. Stanton, M.S. Murillo, Phys. Rev. E 91, 033104 (2015)

    ADS  Google Scholar 

  3. J.H.D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, R. Feifel, Phys. Rev. Lett. 105, 213005 (2010)

    ADS  Google Scholar 

  4. M. Nakano, P. Selles, P. Lablanquie, Y. Hikosaka, F. Penent, E. Shigemasa, K. Ito, S. Carniato, Phys. Rev. Lett. 111, 123001 (2013)

    ADS  Google Scholar 

  5. Z.B. Chen, Phys. Plasmas 30, 032103 (2023)

    ADS  Google Scholar 

  6. D.J. Hoarty, P. Allan, S.F. James, C.R.D. Brown, L.M.R. Hobbs, M.P. Hill, J.W.O. Harris, J. Morton, M.G. Brookes, R. Shepherd, J. Dunn, H. Chen, E. Von Marley, P. Beiersdorfer, H.K. Chung, R.W. Lee, G. Brown, J. Emig, Phys. Rev. Lett. 110, 265003 (2013)

    ADS  Google Scholar 

  7. Y.-D. Jung, Phys. Plasmas 9, 4402 (2002)

    ADS  Google Scholar 

  8. Yu.V. Arkhipov, A.F. Davletov, Phys. Lett. A 247, 339 (1998)

    ADS  Google Scholar 

  9. Z.B. Chen, G.P. Zhao, Y.Y. Qi, J. Electron. Spectrosc. 262, 147283 (2023)

    Google Scholar 

  10. A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 123504 (2019)

    ADS  Google Scholar 

  11. S. Paul, Y.K. Ho, Phys. Plasmas 16, 113301 (2009)

    ADS  Google Scholar 

  12. H.W. Li, S. Kar, Phys. Plasmas 19, 073303 (2012)

    ADS  Google Scholar 

  13. D. Jakimovski, R.K. Janev, Phys. Plasmas 22, 103301 (2015)

    ADS  Google Scholar 

  14. L. Zhu, Y.Y. He, L.G. Jiao, Y.C. Wang, Y.K. Ho, Phys. Plasmas 27, 072101 (2020)

    ADS  Google Scholar 

  15. X. Wang, Z. Jiang, S. Kar, Y.K. Ho, Phys. Plasmas 28, 022102 (2021)

    ADS  Google Scholar 

  16. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, Phys. Plasmas 23, 092704 (2016)

    ADS  Google Scholar 

  17. D. Bielińska-Wa̧ż, J. Karwowski, Phys. Rev. E 69, 016404 (2004)

    ADS  Google Scholar 

  18. A. Poszwa, M.K. Bahar, A. Soylu, Phys. Plasmas 23, 103515 (2016)

    ADS  Google Scholar 

  19. A. Poszwa, M.K. Bahar, Phys. Plasmas 22, 012104 (2015)

    ADS  Google Scholar 

  20. S. Sahoo, Y.K. Ho, Phys. Plasmas 13, 063301 (2006)

    ADS  Google Scholar 

  21. L.B. Zhao, Y.K. Ho, Phys. Plasmas 11, 1695 (2004)

    ADS  Google Scholar 

  22. Y.-D. Jung, Phys. Plasmas 5, 3781 (1998)

    ADS  Google Scholar 

  23. T.N. Chang, T.K. Fang, Y.K. Ho, Phys. Plasmas 20, 092110 (2013)

    ADS  Google Scholar 

  24. C.Y. Lin, Y.K. Ho, Phys. Plasmas 17, 093302 (2010)

    ADS  Google Scholar 

  25. R.K. Janev, S. Zhang, J. Wang, Matter Radiat. Extremes 1, 237 (2016)

    Google Scholar 

  26. T.N. Chang, T.K. Fang, C. Wu, X. Gao, Atoms 10, 16 (2022)

    ADS  Google Scholar 

  27. S. Kar, Y.K. Ho, Phys. Plasmas 15, 013301 (2008)

    ADS  Google Scholar 

  28. F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    ADS  Google Scholar 

  29. B. Das, A. Ghoshal, Few-Body Syst. 61, 22 (2020)

    ADS  Google Scholar 

  30. B. Das, A. Ghoshal, Phys. Plasmas 28, 023506 (2021)

    Google Scholar 

  31. B. Das, A. Ghoshal, Phys. Plasmas 28, 123520 (2021)

    ADS  Google Scholar 

  32. C.-G. Kim, Y.-D. Jung, J. Phys. B 34, 5007 (2001)

    ADS  Google Scholar 

  33. K. Das, P. Rej, A. Ghoshal, Contrib. Plasma Phys. 60, e202000080 (2020)

    ADS  Google Scholar 

  34. N. Das, B. Das, A. Ghoshal, Phys. Plasmas 29, 073505 (2022)

    ADS  Google Scholar 

  35. Y.D. Jung, Eur. Phys. J. D 12, 351 (2000)

    ADS  Google Scholar 

  36. M.F. Gu, Can. J. Phys. 86, 675 (2008)

    ADS  Google Scholar 

  37. E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197–214 (1989)

    ADS  Google Scholar 

  38. R.K. Smith, N.S. Brickhouse, Astrophys. J. 556, L91 (2001)

    ADS  Google Scholar 

  39. B. Das, A. Karmakar, A. Ghosha, Phys. Plasmas 26, 083507 (2019)

    ADS  Google Scholar 

  40. A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.9). https://physics.nist.gov/asd [2022, August 18]. National Institute of Standards and Technology, Gaithersburg (2021). https://doi.org/10.18434/T4W30F

  41. F.B. Rosmej, L.A. Vainshtein, V.A. Astapenko, V.S. Lisitsa, Matter Radiat. Extremes 5, 064202 (2020)

    Google Scholar 

  42. P. Palmeri, J. Deprince, M.A. Bautista, S. Fritzsche, J.A. García, T.R. Kallman, C. Mendoza, P. Quinet, Astron. Astrophys. 657, A61 (2022)

    ADS  Google Scholar 

  43. C.Y. Lin, Y.K. Ho, Eur. Phys. J. D 57, 21–26 (2010)

    ADS  Google Scholar 

  44. C.Y. Lin, Y.K. Ho, Comput. Phys. Commun. 182, 125 (2011)

    ADS  Google Scholar 

  45. C.Y. Lin, Y.K. Ho, Phys. Rev. A 81, 033405 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

Data will be made available on request. We appreciate the tool DeepL during the polish English language. This work was supported by the Grant/Award No. 2021JJ40167 from the Natural Science Foundation of Hunan Province.

Author information

Authors and Affiliations

Authors

Contributions

Z.B.Chen wrote the manuscript text prepared figures.

Corresponding author

Correspondence to Zhan-Bin Chen.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZB. Investigation of the Photoionization Process of Highly Charged Ions Under Non-ideal Classical Plasma Conditions. Few-Body Syst 64, 74 (2023). https://doi.org/10.1007/s00601-023-01853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01853-6

Navigation