Skip to main content
Log in

\(\Lambda -\alpha \) Potential by Folding \(\Lambda \)-Nucleon Interaction with Realistic \(\alpha \) Wave Function

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We construct a folding potential between the \(\alpha \) and \(\Lambda \) particles based on underlying nucleon-nucleon and hyperon-nucleon interactions. Starting from a phenomenological \(\Lambda \)-N potential and a Gaussian form of the \(\alpha \)-particle wave function we obtain the \(\alpha \)-\(\Lambda \) potential and with this potential the binding energy of \(^5_\Lambda \)He is (3.10 MeV), which is consistent with recent experimental data \(3.12 \pm 0.02\) MeV. When in turn an exact solution of the four-body Faddeev-Yakubovsky equation for the \(\alpha \)-particle calculated with the CDBonn, Nijmegen or Argonne V18 realistic nucleon-nucleon potential is used and the phenomenological Gaussian \(\Lambda \)-N potential is replaced by the realistic (e.g. Nijmegen NSC97f) potential approximated by a rank-1 separable form, then \(^5_\Lambda \)He is overbound. In particular, its binding energy given by the folding potential generated with the \(\alpha \) particle wave function based on the CDBonn potential is 7.47 MeV. Although the rank-1 separable \(\Lambda \)-N potential reproduces the exact scattering length and the effective range of the original \(\Lambda \)-N potential, the \(\Lambda \)-\(\alpha \) folding potential results from these \(\Lambda \)-N potential give a large binding energy of \(^5_\Lambda \)He .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Alexander et al.: Phys. Rev. 173, 1452 (1968)

  2. B. Sechi-Zorn et al.: Phys. Rev. 175, 1735 (1968)

  3. R. Engelmann et al.: Phys. Lett. 21, 587 (1966)

  4. J.A. Kadyk et al.: Nucl. Phys. B 27, 13 (1971)

  5. K. Miyagawa et al.: Phys. Rev. C 51, 2905 (1995)

  6. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 97, 881 (1997)

    Google Scholar 

  7. E. Hiyama et al.: Prog. Theor. Phys. 97, 887 (1997)

  8. H.H. Oo, K.S. Myint, H. Kamada, W. Glöckle, Prog. Theor. Phys. 113, 809 (2005)

    Article  ADS  Google Scholar 

  9. H.H. Oo, K.S. Myint, H. Kamada, W. Glöckle, Few Body Syst. 54, 1283 (2013)

    Article  ADS  Google Scholar 

  10. Machleidt, R., Phys. Rev. C 63, (2001) 024001

  11. Stoks, V.G.J., Klomp, R.A.M., Rentmeester M. C. M. and de Swart, J. J.: Phys. Rev. C 48, 792 (1993)

  12. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  13. E. Hiyama et al., Phys. Rev. C 53, 2075 (1996)

    Article  ADS  Google Scholar 

  14. J. Haidenbauer et al., Nucl. Phys. A 915, 24 (2013)

    Article  ADS  Google Scholar 

  15. Haidenbauer, J., Meißner, Ulf-G,: Phys. Rev. C 72(4), 044005 (2005)

  16. T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999)

    Article  ADS  Google Scholar 

  17. M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 15, 2547 (1977)

    Article  ADS  Google Scholar 

  18. K. Tominaga, T. Ueda, M. Yamaguchi, N. Kijima, D. Okamoto, K. Miyagawa, T. Yamada, Nucl. Phys. A 642, 483 (1998)

    Article  ADS  Google Scholar 

  19. Fujiwara, Y., et al.: Phys. Rev. C 65, 014002 (2002)

  20. W. Glöckle, H. Kamada, Phys. Rev. Lett. 71, 971 (1993)

    Article  ADS  Google Scholar 

  21. Kamada, H., W. Glöckle, Nucl. Phys. A 548, 205 (1992)

  22. W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996)

    Article  ADS  Google Scholar 

  23. W. Glöckle, The quantum mechanical few-body problem (Springer, Berlin, 1983)

    Book  Google Scholar 

  24. H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977)

    Article  ADS  Google Scholar 

  25. A. Gal, Adv. Nucl. Phys. 8, 1 (1975)

    Google Scholar 

  26. Afnan, I.R., Gibson, B.F,: Phys. Rev. C 92, (2015) 054608

  27. P.M.M. Maessen, Th.A. Rijken, J. de Swart, J. Phys. Rev. C 40, 2226 (1989)

    Article  ADS  Google Scholar 

  28. Nagels, M.M., Rijken, Th.A., Yamamoto, Y,: Phys. Rev. C 99, 044003 (2019)

Download references

Acknowledgements

We would like to thank Prof. J. Golak (Jagiellonian Uni.) for helping us with fruitful physics discussions during his visit Japan (2020). This work was supported by DAAD of Germany and partially by Grant-in-Aid for Scientific Research (B) No: 16H04377, Japan Society for the Promotion of Science (JSPS). The numerical calculations were performed on the interactive server at RCNP, Osaka University, Japan, and partially on the supercomputer cluster of the JSC, Jülich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kamada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oo, H.H., Kamada, H. \(\Lambda -\alpha \) Potential by Folding \(\Lambda \)-Nucleon Interaction with Realistic \(\alpha \) Wave Function. Few-Body Syst 63, 9 (2022). https://doi.org/10.1007/s00601-021-01709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01709-x

Navigation