Skip to main content
Log in

Calculable Microscopic Theory for \(^{12}\)C(\(\alpha , \gamma \))\(^{16}\)O Cross Section near Gamow Window

  • Published:
Few-Body Systems Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2023

This article has been updated

Abstract

\(^{12}\textrm{C}(\alpha , \gamma )^{16}\)O radiative-capture process is a key reaction to produce the element of oxygen in stars. Measuring the cross section near the Gamow window is extremely hard because it is too small. To make a theoretical contribution towards resolving the long-standing problem, I present a microscopic formulation that aims at providing all materials needed to calculate the cross section. The states of \(^{12}\textrm{C}\) and \(^{16}\textrm{O}\) relevant to the reaction are respectively described with fully microscopic 3 \(\alpha \)-particle and 4 \(\alpha \)-particle configurations, in which the relative motion among the \(\alpha \) particles is expanded in terms of correlated Gaussian basis functions. The configuration space has the advantage of being able to well describe the reduced \(\alpha \)-width amplitudes of the states of \(^{16}\)O. Both electric dipole and electric quadrupole transitions are responsible for the radiative-capture process. The \(\alpha \) particle is described with a \((0s)^4\) configuration admixed with a small amount of an isospin \(T=1\) impurity component, which is crucially important to account for the isovector electric dipole transition. The isoscalar electric dipole operators are also taken into account up to the first order beyond the long-wavelength approximation. All the necessary ingredients are provided to make the paper self-contained and ready for numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954)

    Article  ADS  Google Scholar 

  2. C.W. Cook, W.A. Fowler, C.C. Lauritsen, T. Lauritsen, Phys. Rev. 107, 508 (1957)

    Article  ADS  Google Scholar 

  3. R.J. de Boer et al., Rev. Mod. Phys. 89, 035007 (2017)

    Article  ADS  Google Scholar 

  4. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  5. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988)

    Google Scholar 

  6. https://www.nndc.bnl.gov/nudat2/

  7. M. Katsuma, Phys. Rev. C 78, 034606 (2008)

    Article  ADS  Google Scholar 

  8. M. Katsuma, Phys. Rev. C 81, 029804 (2010)

    Article  ADS  Google Scholar 

  9. M. Katsuma, ApJ 745, 192 (2012)

    Article  ADS  Google Scholar 

  10. P. Descouvemont, M. Dufour, J.-M. Sparenberg, Phys. Rev. C 81, 029803 (2010)

    Article  ADS  Google Scholar 

  11. P. Descouvemont, Nucl. Phys. A 470, 309 (1987)

    Article  ADS  Google Scholar 

  12. P. Descouvemont, D. Baye, Phys. Rev. C 36, 1249 (1987)

    Article  ADS  Google Scholar 

  13. R.B. Wiringa, A private communication

  14. D. Baye, Phys. Rev. C 86, 034306 (2012)

    Article  ADS  Google Scholar 

  15. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010)

    Article  ADS  Google Scholar 

  16. K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, D. Baye, Phys. Rev. Lett. 107, 132502 (2011)

    Article  ADS  Google Scholar 

  17. D. Brink, in Proc. of the Int. School of Physics ‘Enrico Fermi’, vol. 247, Course 36, ed. by C. Bloch (Academic Press, New York, 1966)

  18. Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976)

    Article  ADS  Google Scholar 

  19. Y. Suzuki, Prog. Theor. Phys. 56, 111 (1976)

    Article  ADS  Google Scholar 

  20. H. Horiuchi, Prog. Theor. Phys. Suppl. No. 62, 90 (1977)

    Article  ADS  Google Scholar 

  21. Y. Suzuki, K. Arai, Y. Ogawa, K. Varga, Phys. Rev. C 54, 2073 (1996)

    Article  ADS  Google Scholar 

  22. S. Ishikawa, Phys. Rev. C 87, 055804 (2013)

    Article  ADS  Google Scholar 

  23. H. Suno, Y. Suzuki, P. Descouvemont, Phys. Rev. C 94, 054607 (2016)

    Article  ADS  Google Scholar 

  24. D. Baye, P. Descouvemont, Nucl. Phys. A 481, 445 (1988)

    Article  ADS  Google Scholar 

  25. R.E. Azuma et al., Phys. Rev. C 50, 1194 (1994)

    Article  ADS  Google Scholar 

  26. X.D. Tang et al., Phys. Rev. C 81, 045809 (2010)

    Article  ADS  Google Scholar 

  27. K. Varga, Y. Suzuki, Phys. Rev. C 52, 2885 (1995)

    Article  ADS  Google Scholar 

  28. Y. Suzuki, K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, vol. 54 (Lecture Notes in Physics (Springer, Berlin, 1998)

    MATH  Google Scholar 

  29. K. Varga, Y. Suzuki, R.G. Lovas, Nucl. Phys. A 571, 447 (1994)

    Article  ADS  Google Scholar 

  30. Y. Suzuki, R.G. Lovas, K. Yabana, K. Varga, Structure and Reactions of Light Exotic Nuclei (Taylor & Francis, London, 2003)

    Book  Google Scholar 

  31. H. Matsumura, Y. Suzuki, Nucl. Phys. A 739, 238 (2004)

    Article  ADS  Google Scholar 

  32. Y. Suzuki, W. Horiuchi, M. Orabi, K. Arai, Few-Body Syst. 42, 33 (2008)

    Article  ADS  Google Scholar 

  33. S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, Few-Body Syst. 52, 97 (2012)

    Article  ADS  Google Scholar 

  34. Y. Suzuki, J. Usukura, K. Varga, J. Phys. B Atom. Mol. Opt. Phys. 31, 31 (1998)

    Article  ADS  Google Scholar 

  35. The number is obtained by counting how many different terms appear from \((a_1+\cdots +a_n)^4\), where \(n=4!\) and \(a_i\)’s are assumed to differ from each other. The number of terms of type \(a_i^4,\, a_i^3a_j,\, a_i^2a_j^2, \, a_i^2a_ja_k\), or \(a_ia_ja_ka_l\) is \(n,\, 2{}_nC_2,\, {}_nC_2,\, n{}_{n-1}C_2,\, {}_nC_4\), respectively. The total number of terms amounts to \(\frac{1}{24}n(n+1)(n+2)(n+3)\), which is 17550. Similarly \((a_1+\cdots +a_n)^3\) contains 2600 terms

  36. K. Arai, Y. Ogawa, Y. Suzuki, K. Varga, Phys. Rev. C 54, 132 (1996)

    Article  ADS  Google Scholar 

  37. A.B. Volkov, Nucl. Phys. 74, 33 (1965)

    Article  Google Scholar 

  38. D.R. Thompson, M. Lemere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977)

    Article  ADS  Google Scholar 

  39. W. Satuła, J. Dobaczewski, W. Nazarewicz, M. Rafalski, Phys. Rev. Lett. 103, 012502 (2009)

    Article  ADS  Google Scholar 

  40. W. Satuła, A private communication

  41. K. Varga, J. Usukura, Y. Suzuki, Phys. Rev. Lett. 80, 1876 (1998)

    Article  ADS  Google Scholar 

  42. J. Usukura, K. Varga, Y. Suzuki, Phys. Rev. A 58, 1918 (1998)

    Article  ADS  Google Scholar 

  43. H. Nemura, Y. Akaishi, Y. Suzuki, Phys. Rev. Lett. 89, 142504 (2002)

    Article  ADS  Google Scholar 

  44. W. Horiuchi, Y. Suzuki, Phys. Rev. C 76, 024311 (2007)

    Article  ADS  Google Scholar 

  45. W. Horiuchi, Y. Suzuki, Phys. Rev. C 78, 034305 (2008)

    Article  ADS  Google Scholar 

  46. W. Horiuchi, Y. Suzuki, K. Arai, Phys. Rev. C 85, 054002 (2012)

    Article  ADS  Google Scholar 

  47. W. Horiuchi, Y. Suzuki, Phys. Rev. C 89, 011304(R) (2014)

    Article  ADS  Google Scholar 

  48. J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Rev. Mod. Phys. 85, 693 (2013)

    Article  ADS  Google Scholar 

  49. M. Hall, The Theory of Groups (Macmillan, New York, 1959)

    MATH  Google Scholar 

  50. Y. Ogawa, K. Arai, Y. Suzuki, K. Varga, Nucl. Phys. A 673, 122 (2000)

    Article  ADS  Google Scholar 

  51. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to D. Baye for several communications on the electric dipole operator for isospin-forbidden transitions. He is grateful to N. Itagaki for discussions on the electric dipole transition in \(^{12}\)C. He also thanks W. Satuła and R. B. Wiringa for providing him with the isospin impurity rates in \(^{12}\)C and \(^{16}\)O as well as in \(\alpha \) particle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Equation (2.33) is corrected from \(X_d=4, X_e=-2 to X_d=2, X_e=-1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y. Calculable Microscopic Theory for \(^{12}\)C(\(\alpha , \gamma \))\(^{16}\)O Cross Section near Gamow Window. Few-Body Syst 62, 2 (2021). https://doi.org/10.1007/s00601-020-01582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01582-0

Navigation