Skip to main content
Log in

Solutions of Klein–Gordon and Dirac Equations for Non-pure Dipole Potential in 2D Systems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study the quantum relativistic wave equations (Klein–Gordon and Dirac) for the non-pure dipole potential \(V(r)=-Ze/r+D\cos \theta /r^{2}\), in the case of two-dimensional systems. We consider either spin symmetry or anti-spin symmetry cases in our computations. We give the analytical expressions of the eigenfunctions, compute the exact values of the energies and study their dependence according to the dipole moment D. Our study generalizes the energies of the Kratzer potential as well as the magnetic quantum number m, which is replaced with the Mathieu characteristic values obtained during the resolution of the angular equations. For each magnetic quantum number, we demonstrate the existence of a critical value for the dipole moment, beyond which the corresponding bound state can no longer exist. We find that the critical value is null when \(m=0\); this means that these s-states cannot exist for this system and this is in agreement with non-relativistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Makarov et al., A systematic search for nonrelativistic systems with dynamical symmetries. Nuovo Cimento A 52, 1061 (1967)

    ADS  Google Scholar 

  2. H. Hartmann, Die Bewegung eines Körpers in einem ringförmigen Potentialfeld. Theor. Chim. Acta 24, 201 (1972)

    Google Scholar 

  3. A. Hautot, Exact motion in noncentral electric fields. J. Math. Phys. 14, 1320 (1973)

    ADS  Google Scholar 

  4. A.D. Alhaidari, Solution of the Dirac equation by separation of variables in spherical coordinates for a class of three-parameter non-central electromagnetic potential. Ann. Phys. 320, 453 (2005). (Erratum-ibid. 321, 1524–1525 (2006))

    ADS  MathSciNet  MATH  Google Scholar 

  5. S. Dong-Sheng et al., The quantum characteristics of a class of complicated double ring-shaped non-central potential. Phys. Scr. 89, 045002 (2014)

    ADS  Google Scholar 

  6. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula method for bound state problems. Few Body Syst. 56, 63–78 (2015)

    ADS  Google Scholar 

  7. G.F. Gribakin, A.R. Swann, Effect of dipole polarizability on positron binding by strongly polar molecules. J. Phys. B 48, 215101 (2015)

    ADS  Google Scholar 

  8. A. Bachkhaznadji, M. Lassaut, Solvable few-body quantum problems. Few Body Syst. 56, 1–17 (2015)

    ADS  Google Scholar 

  9. A. Özfidan, A. Durmus, Analysis of N-dimensional Klein–Gordon equation for hydrogen molecule in the non-central potential field. Ann. Phys. 396, 546–563 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  10. L. Khodja, M. Achour, S. Zaim, Hartmann potential with a minimal length and generalized recurrence relations for matrix elements. Few Body Syst. 61, 17 (2020)

    ADS  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  12. A.H. Castro Neto, K.S. Novoselov, New directions in science and technology: two-dimensional crystals. Rep. Prog. Phys. 74, 082501 (2011)

    ADS  Google Scholar 

  13. H. Abdoul-Carime, J. Schermann, C. Desfrançois, Multipole-bound molecular negative ions. Few Body Syst. 31, 183–190 (2002)

    ADS  Google Scholar 

  14. H.-P. Liu, Y.-F. Duan, L. Yi, Anomalous optical and electronic properties of \(CaTiO_{3}\) perovskites. Commun. Theor. Phys. 48, 563 (2007)

    ADS  Google Scholar 

  15. K.M. Daily, Hyperspherical asymptotics of a system of four charged particles. Few Body Syst. 56, 809–822 (2015)

    ADS  Google Scholar 

  16. N.G. Aghekyan, E.M. Kazaryan, L.S. Petrosyan, H.A. Sarkisyan, Two electronic states in a quantum ring: Mathieu equation approach. J. Phys. Conf. Ser. 248, 012048 (2010)

    Google Scholar 

  17. N.G. Aghekyan, E.M. Kazaryan, H.A. Sarkisyan, Two electron states in a thin spherical nanolayer: reduction to the model of two electrons on a sphere. Few Body Syst. 53, 505–513 (2012)

    ADS  Google Scholar 

  18. Y. Gindikin, V.A. Sablikov, Spin-orbit-driven electron pairing in two dimensions. Phys. Rev. B 98, 115137 (2018)

    ADS  Google Scholar 

  19. A.D. AlHaidari, Analytic solution of the Schrödinger equation for an electron in the field of a molecule with an electric dipole moment. Ann. Phys. 323, 1709 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  20. M.-C. Zhang, Tridiagonal treatment for the Schrödinger equation with a noncentral electric dipole ring-shaped potential. J. Math. Chem. 50, 2659–2670 (2012)

    MathSciNet  MATH  Google Scholar 

  21. S.H. Patil, An electron in a finite-dipole potential. J. Chem. Phys. 120, 6399–6407 (2004)

    ADS  Google Scholar 

  22. M. Moumni, A. BenSlama, S. Zaim, A new limit for the non-commutative space–time parameter. J. Geom. Phys. 61, 51 (2011)

    MATH  Google Scholar 

  23. J. Simons, Theoretical study of negative molecular ions. Rev. Phys. Chem. 62, 107–128 (2011)

    ADS  Google Scholar 

  24. M. Moumni, M. Falek, Schrödinger equation for non-pure dipole potential in 2D systems. J. Math. Phys. 57, 072104 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. K.T. Hecht, A. Adler, Generalized seniority for favored \(J\ne 0\) pairs in mixed configurations. Nucl. Phys. A 137, 129–143 (1969)

    ADS  Google Scholar 

  26. A. Arima, M. Harvey, K. Shimizu, Pseudo LS coupling and pseudo SU(3) couling shemes. Phys. Lett. B 30, 517–522 (1969)

    ADS  Google Scholar 

  27. J.N. Ginocchio, Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78, 436 (1997)

    ADS  Google Scholar 

  28. H. Liang, J. Meng, S.G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep. 570, 1–84 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Y.-F. Cheng, T.-Q. Dai, Solution of the Dirac equation for ring-shaped modified Kratzer potential. Commun. Theor. Phys. 48, 431 (2007)

    ADS  MathSciNet  Google Scholar 

  30. O. Aydogdu, R. Sever, Exact pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few Body Syst. 47, 193–200 (2010)

    ADS  Google Scholar 

  31. Y.-J. Xiao, Z.-W. Long, Solution of Klein–Gordon equation for pseudo-Coulomb potential plus a new ring-shaped potential. Commun. Theor. Phys. 53, 54–56 (2010)

    ADS  MATH  Google Scholar 

  32. B.J. Falaye, Exact solutions of the Klein–Gordon equation for spherically asymmetrical singular oscillator. Few Body Syst. 53, 563–571 (2012)

    ADS  MathSciNet  Google Scholar 

  33. M. Eshghi, H. Mehraban, S.M. Ikhdair, The relativistic bound states of a non-central potential. Pramana J. Phys. 88, 73 (2017)

    ADS  Google Scholar 

  34. W. Pauli Jr., Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 43, 601 (1927)

    ADS  MATH  Google Scholar 

  35. H. Snyder, J. Weinberg, Stationary states of scalar and vector fields. Phys. Rev. 57, 307 (1940)

    ADS  MATH  Google Scholar 

  36. C.-L. Ho, P. Roy, On zero energy states in graphene. EPL 108, 20004 (2014)

    ADS  Google Scholar 

  37. H. Hassanabadi, S. Zarrinkamar, A.A. Rajabi, Exact solutions of D-dimensional Schrödinger equation for an energy-dependent potential by NU method. Commun. Theor. Phys. 55, 541 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  38. O. Langueur, M. Merad, B. Hamil, DKP equation with energy dependent potentials. Commun. Theor. Phys. 71, 1069 (2019)

    ADS  MathSciNet  Google Scholar 

  39. J. Formánek, R.J. Lombard, J. Mareš, Waveequations with energy-dependent potentials. Czech. J. Phys. 54, 289–315 (2004)

    ADS  Google Scholar 

  40. J. García-Martínez, J. García-Ravelo, J.J. Peña, A. Schulze-Halberg, Exactly solvable energy-dependent potentials. Phys. Lett. A 373, 3619–3623 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  41. R. Yekken, R.J. Lombard, Energy-dependent potentials and the problem of the equivalent local potential. J. Phys. A Math. Theor. 43, 125301 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  42. R. Yekken, M. Lassaut, R.J. Lombard, Bound states of energy dependent singular potentials. Few Body Syst. 54, 2113–2124 (2013)

    ADS  MATH  Google Scholar 

  43. A. Schulze-Halberg, Ö. Yeşiltaş, Generalized Schrödinger equations with energy-dependent potentials: formalism and applications. J. Math. Phys. 59, 113503 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. P. Alberto, A.S. de Castro, M. Malheiro, Spin and pseudospin symmetries and the equivalent spectra of relativistic spin\(-1/2\) and spin\(-0\) particles. Phys. Rev. C 75, 047303 (2007)

    ADS  Google Scholar 

  45. E. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pures. Appl. 13, 137 (1868)

    MATH  Google Scholar 

  46. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  47. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Annales de l’Ecole Normale Supérieure 12, 47 (1883)

    MathSciNet  MATH  Google Scholar 

  48. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555 (1928)

    ADS  MATH  Google Scholar 

  49. J. Meixner, F.W. Schäfke, G. Wolf, Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies. Lecture Notes in Mathematics, vol. 837 (Springer, Berlin, 1980)

    MATH  Google Scholar 

  50. I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series, and Products, ed. by A. Jeffrey, D. Zwillinger (Elsevier, London, 2007)

  51. B. Zaslow, M.E. Zandler, Two-dimensional analog to the hydrogen atom. Am. J. Phys. 35, 1118 (1967)

    ADS  Google Scholar 

  52. D.G.W. Parfitt, M.E. Portnoi, The two-dimensional hydrogen atom revisited. J. Math. Phys. 43, 4681 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  53. C. Berkdemir, Relativistic treatment of a spin-zero particle subject to a Kratzer-type potential. Am. J. Phys. 75, 81 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  54. A. Arda, R. Sever, Exact spin and pseudo-spin symmetric solutions of the Dirac–Kratzer problem with a tensor potential via Laplace transform approach. Mod. Phys. Lett. A 27, 1250171 (2012)

    ADS  MATH  Google Scholar 

  55. R.L. Hall, N. Saad, Smooth transformations of Kratzer’s potential in N dimensions. J. Chem. Phys. 109, 2983 (1998)

    ADS  Google Scholar 

  56. S.M. Ikhdair, R. Sever, Exact quantization rule to the Kratzer-type potentials an application to the diatomic molecules. J. Math. Chem. 45, 1137 (2009)

    MathSciNet  MATH  Google Scholar 

  57. B.C. Lütfüoglu, Scattering of Klein–Gordon particles in the background of mixed scalar–vector generalized symmetric Woods–Saxon potential. Eur. Phys. J. Plus 133, 309 (2018)

    Google Scholar 

  58. B.C. Lütfüoglu, On the role of differentiation parameter in a bound state solution of the Klein–Gordon equation. Commun. Theor. Phys. 71, 267 (2019)

    ADS  MathSciNet  Google Scholar 

  59. F.M. Fernández, Bound states of a charged particle in the field of an electric quadrupole in two dimensions. J. Math. Chem. 52, 1576 (2014)

    MathSciNet  MATH  Google Scholar 

  60. E. Fermi, E. Teller, The capture of negative mesotrons in matter. Phys. Rev. 72, 399 (1947)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was done with funding from the DGRSDT of the Ministry of Higher Education and Scientific Research in Algeria as part of the PRFU B00L02UN070120190003. The authors would like to thank the reviewer who greatly contributed to improving the quality of this work with his remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Moumni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumni, M., Falek, M. & Heddar, M. Solutions of Klein–Gordon and Dirac Equations for Non-pure Dipole Potential in 2D Systems. Few-Body Syst 61, 47 (2020). https://doi.org/10.1007/s00601-020-01580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01580-2

Navigation