Skip to main content

Advertisement

Log in

Analytical Calculation of Cl\(^{15+}\) Ion Immersed in Dense Plasmas

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A method of analytically calculating energy levels of He-like ions in an environment of dense plasma is given by using the angular momentum coupling theory and irreducible tensor theory under Hartree–Fock approximation. In order to obtain higher calculation precision, relativistic correction terms of the non-relativistic energy including corrections caused by relativistic mass, one- and two-body Darwin effect, spin–spin contact interaction and orbit–orbit interaction, are calculated. The binding energies of the ground state \(1s^2\) \(^1S\) and excited state 1snp \(^1P\) (n = 1 − 4) of He-like Cl ions and the transition energy between two energy levels in an environment of dense plasma are calculated. The scaling relationship between the energy shift of plasma and its temperature and density is given. According to our study, the energy shift of plasma conforms very well with the recent high-precision experimental result (Phys Rev A 100:012511, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Deschaud, O. Peyrusse, Phys. Plasmas 27, 063303 (2020)

    Google Scholar 

  2. H. Nguyen, M. Koenig, D. Benredjem, M. Caby, G. Coulaud, Phys. Rev. A 33, 1279 (1986)

    ADS  Google Scholar 

  3. M. Koenig, P. Malnoult, H. Nguyen, Phys. Rev. A 38, 2089 (1988)

    ADS  Google Scholar 

  4. M. Nantel, G. Ma, S. Gu, C.Y. Cote, J. Itatani, D. Umstadter, Phys. Rev. Lett. 80, 4442 (1998)

    ADS  Google Scholar 

  5. S. Kar, Phys. Rev. A 72, R010703 (2005)

    ADS  Google Scholar 

  6. A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quant. Chem. 58, 115 (2009)

    Google Scholar 

  7. J. Deprince, M.A. Bautista, S. Fritzsche, J. Garc\(\acute{i}\)a, T.R. Kallman, C. Mendoza, P. Palmeri, P. Quinet, Astron. Astrophys. 624 A74 (2019)

  8. J. Deprince, M.A. Bautista, S. Fritzsche, J. Garc\(\acute{i}\)a, T.R. Kallman, C. Mendoza, P. Palmeri, P. Quinet, Astron. Astrophys. 626, A83 (2019)

  9. H.R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964)

    Google Scholar 

  10. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  11. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997)

    Google Scholar 

  12. I.I. Sobelman, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer, New York, 1995)

    Google Scholar 

  13. A. Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Förster, K. Witte, Phys. Rev. Lett. 82, 4843 (1999)

    ADS  Google Scholar 

  14. D.J. Hoarty, P. Allan, S.F. James, C.R.D. Brown, L.M.R. Hobbs, M.P. Hill, J.W.O. Harris, J. Morton, M.G. Brookes, R. Shepherd, J. Dunn, H. Chen, E. Von Marley, P. Beiersdorfer, H.K. Chung, R.W. Lee, G.V. Brown, J. Emig Phys. Rev. Lett. 110, 265003 (2013)

    ADS  Google Scholar 

  15. S.B. Hansen, E.C. Harding, P.F. Knapp, M.R. Gomez, T. Nagayama, J.E. Bailey, High Energy Density Phys. 24, 39 (2017)

    ADS  Google Scholar 

  16. M.F. Gu, P. Beiersdorfer Phy. Rev. A 101, 032501 (2020)

    Google Scholar 

  17. N.C. Woolsey, C.A. Back, R.W. Lee, A. Calisti, C. Mossé, R. Stamm, B. Talin, A. Asfaw, L.S. Klein, J. Quant. Spectrosc. Radiat. Transf. 65, 573 (2000)

    ADS  Google Scholar 

  18. P. Beiersdorfer, G.V. Brown, R. Shepherd, P. Allan, C.R.D. Brown, M.P. Hill, D.J. Hoarty, L.M.R. Hobbs, S.F. James, H.K. Chung, E.G. Hill, Phys. Plasmas 23, 101211 (2016)

    ADS  Google Scholar 

  19. O. Renner, F.B. Rosmej, Matter Radiat. Extremes 4, 024201 (2019)

    Google Scholar 

  20. F.B. Rosmej, K. Bennadji, V.S. Lisitsa, Phy. Rev. A 84, 032512 (2011)

    ADS  Google Scholar 

  21. F.B. Rosmej, J. Phys. B 51, 09LT01 (2018)

    Google Scholar 

  22. J. Stewart, K. Pyatt, Astrophys. J. 144, 1203 (1966)

    ADS  Google Scholar 

  23. R. Piron, T. Blenski, Phys. Rev. E 83, 026403 (2011)

    ADS  Google Scholar 

  24. X. Li, Z.H. Xu, F.B. Rosmej, J. Phys. B 39, 3373 (2006)

    ADS  Google Scholar 

  25. H.W. Hu, Y.T. Zhao, F.L. Li, C.Z. Dong, W.C. Chen, Phys. Plasmas 20, 122110 (2013)

    ADS  Google Scholar 

  26. X.F. Li, G. Jiang, H.B. Wang, M. Wu, Q. Sun, Phys. Scr. 92, 075401 (2017)

    ADS  Google Scholar 

  27. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer, New York, 2008)

    Google Scholar 

  28. D. Salzman, Atomic Physics in Hot Plasmas (Oxford University Press, Oxford, 1998)

    Google Scholar 

  29. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    ADS  Google Scholar 

  30. B.J.B. Crowley, Phys. Rev. A 41, 2179 (1990)

    ADS  Google Scholar 

  31. B. Saha, S. Fritzsche, J. Phys. B 40, 259 (2007)

    ADS  Google Scholar 

  32. M.S. Murillo, J. Weisheit, S.B. Hansen, M.W.C. Dharma-wardana, Phys. Rev. E 87, 063113 (2013)

    ADS  Google Scholar 

  33. M. Belkhiri, C.J. Fontes, Phys. Rev. A 92, 032501 (2015)

    ADS  Google Scholar 

  34. V.A. Boiko, A.Ya. Faenov, S.A. Pikuz, IYu. Skobelev, A.V. Vinogradov, E.A. Yukov, J. Phys. B 10, 3387 (1977)

    ADS  Google Scholar 

  35. P. Lee, R. Nolte, G. Fussmann, G. Janeschitz, AIP Conf. Proc. 168, 135 (1988)

    ADS  Google Scholar 

  36. E. Källne, J. Källne, Phys. Scr. T3, 185 (1983)

    ADS  Google Scholar 

  37. B. Sylwester, J. Sylwester, M. Siarkowski, K.J.H. Phillips, E. Landi, Proc. Int. Astron. Union 2004, 671 (2004)

    Google Scholar 

  38. S. Kasthurirangan, J.K. Saha, A.N. Agnihotri, S. Bhattacharyya, D. Misra, A. Kumar, P.K. Mukherjee, J.P. Santos, A.M. Costa, P. Indelicato, T.K. Mukherjee, L.C. Tribedi, Phy. Rev. Lett. 111, 243201 (2013)

    ADS  Google Scholar 

  39. P. Beiersdorfer, G.V. Brown, A. McKelvey, R. Shepherd, Phys. Rev. B 100, 012511 (2019)

    Google Scholar 

  40. X. Li, Eurphys. Lett. 99, 33001 (2012)

    ADS  Google Scholar 

  41. X. Li, F.B. Rosmej, Phys. Lett. A 384, 126478 (2020)

    Google Scholar 

  42. Z.B. Chen, J. Quantum. Spectrosc. Radiat. Transf. 234, 90 (2019)

    ADS  Google Scholar 

  43. A.K. Singh, D. Dawra, M. Dimri et al., Phys. Lett. A 384, 126369 (2020)

    Google Scholar 

  44. K. Ma, Z.B. Chen, S.Z. Huang, Acta. Phys. Sin. 68, 023102 (2019)

    Google Scholar 

  45. Z.B. Chen, K. Ma, Phys. Plasmas 26, 082115 (2019)

    ADS  Google Scholar 

  46. X. Li, F.B. Rosmej, V.S. Lisitsa, V.A. Astapenko, Phys. Plasmas 26, 033301 (2019)

    ADS  Google Scholar 

  47. S.K. Chaudhuri, P.K. Mukherjee, Eur. Phys. J. D 71, 71 (2017)

    ADS  Google Scholar 

  48. T. Dornheim, S. Groth, M. Bonitz, Phys. Rep. 744, 1 (2018)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804112 and 11504421), the Natural Science Foundation of Anhui Province of China (Grant No. 1808085QA22), the Natural Science Foundation of the Higher Education Institutions of Anhui Province of China (Grant Nos. KJ2019A0610, KJHS2019B12) and the Open Research Project of Anhui Simulation Design and Modern Manufacture Engineering Technology Research Center (HuangShan University)(Grant NO. SGCZXYB1807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xls 75 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Chu, Y. & Chen, Z.B. Analytical Calculation of Cl\(^{15+}\) Ion Immersed in Dense Plasmas. Few-Body Syst 61, 42 (2020). https://doi.org/10.1007/s00601-020-01577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01577-x

Navigation