Skip to main content
Log in

Developments of the Jülich–Bonn Dynamical Coupled-Channel Analysis

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A new analysis of \(K\varLambda \) photoproduction is presented, including the latest data measured at Jefferson Lab and other facilities. Evidence for two states has been found, the \(N(1900)3/2^+\) and \(N(2060)5/2^-\) resonances that have been seen in other analysis. Future extensions are discussed like the use of model selection techniques to achieve a minimal resonance content of the amplitude. Also, conceptual aspects like three-body unitarity are highlighted that can help to provide a connection between phenomenology and ab-initio lattice QCD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ceci, M. Döring, C. Hanhart, S. Krewald, U.-G. Meißner, A. Švarc, Relevance of complex branch points for partial wave analysis. Phys. Rev. C 84, 015205 (2011). arXiv:1104.3490 [nucl-th]

    Article  ADS  Google Scholar 

  2. H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Isospin decomposition of \(\gamma N \rightarrow N^*\) transitions within a dynamical coupled-channels model. Phys. Rev. C 94, 015201 (2016). arXiv:1605.00363 [nucl-th]

    Article  ADS  Google Scholar 

  3. D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer, U.-G. Meißner, K. Nakayama, Eta photoproduction in a combined analysis of pion- and photon-induced reactions. Eur. Phys. J. A 51, 70 (2015). arXiv:1504.01643 [nucl-th]

    Article  ADS  Google Scholar 

  4. D. Rönchen, Photocouplings at the pole from pion photoproduction. Eur. Phys. J. A 50, 101 (2014). Erratum: [Eur. Phys. J. A 51 (2015) 63], arXiv:1401.0634 [nucl-th]

    Article  ADS  Google Scholar 

  5. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Neutrino-induced forward meson-production reactions in nucleon resonance region. Phys. Rev. D 86, 097503 (2012). arXiv:1207.5724 [nucl-th]

    Article  ADS  Google Scholar 

  6. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Dynamical coupled-channels model of K\(^-\)p reactions: determination of partial-wave amplitudes. Phys. Rev. C 90, 065204 (2014). arXiv:1407.6839 [nucl-th]

    Article  ADS  Google Scholar 

  7. A. Cieplý, M. Mai, U.G. Meißner, J. Smejkal, Nucl. Phys. A 954, 17 (2016). https://doi.org/10.1016/j.nuclphysa.2016.04.031. arXiv:1603.02531 [hep-ph]

    Article  ADS  Google Scholar 

  8. C.A. Paterson et al., [CLAS Collaboration], Photoproduction of \(\Lambda \) and \(\Sigma ^0\) hyperons using linearly polarized photons. Phys. Rev. C 93, 065201 (2016). arXiv:1603.06492 [nucl-ex]

  9. A. Lleres, et al., [GRAAL Collaboration], Measurement of beam-recoil observables \(O_x\), \(O_z\) and target asymmetry for the reaction \(\gamma p \rightarrow K^+ \Lambda \). Eur. Phys. J. A 39, 149 (2009). arXiv:0807.3839 [nucl-ex]

    Article  ADS  Google Scholar 

  10. V.A. Nikonov, A.V. Anisovich, E. Klempt, A.V. Sarantsev, U. Thoma, Further evidence for N (1900) P(13) from photoproduction of hyperons. Phys. Lett. B 662, 245 (2008). arXiv:0707.3600 [hep-ph]

    Article  ADS  Google Scholar 

  11. A.V. Anisovich, V. Burkert, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Helicity amplitudes for photoexcitation of nucleon resonances off neutrons. Eur. Phys. J. A 49, 67 (2013). arXiv:1304.2177 [nucl-ex]

    Article  ADS  Google Scholar 

  12. C. Patrignani et al., [Particle Data Group], Review of Particle Physics. Chin. Phys. C 40, 100001 (2016)

  13. R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Unified Chew–Mandelstam SAID analysis of pion photoproduction data. Phys. Rev. C 86, 015202 (2012). arXiv:1202.0845 [hep-ph]

    Article  ADS  Google Scholar 

  14. M. Döring, J. Revier, D. Rönchen, R.L. Workman, Correlations of \(\pi \)N partial waves for multireaction analyses. Phys. Rev. C 93, 065205 (2016). arXiv:1603.07265 [nucl-th]

    Article  ADS  Google Scholar 

  15. B. Guegan, J. Hardin, J. Stevens, M. Williams, Model selection for amplitude analysis. JINST 10, P09002 (2015). arXiv:1505.05133 [physics.data-an]

    Article  ADS  Google Scholar 

  16. T. Hasti, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, Berlin, 2009)

    Book  Google Scholar 

  17. J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, R. Molina, Model selection for pion photoproduction. Phys. Rev. C 95, 015203 (2017). arXiv:1610.07547 [nucl-th]

    Article  ADS  Google Scholar 

  18. M. Mai, B. Hu, M. Döring, A. Pilloni, A. Szczepaniak, Three-body unitarity with isobars revisited. Eur. Phys. J. A 53, 177 (2017). arXiv:1706.06118 [nucl-th]

    Article  ADS  Google Scholar 

  19. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). arXiv:1104.5152 [hep-ph]

    Article  ADS  Google Scholar 

  20. G.P. Engel et al., [BGR Collaboration], QCD with two light dynamical Chirally improved quarks: baryons. Phys. Rev. D 87, 074504 (2013). arXiv:1301.4318 [hep-lat]

  21. C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Phys. Rev. D 95(1), 014510 (2017). arXiv:1610.01422 [hep-lat]

    Article  ADS  Google Scholar 

  22. A.L. Kiratidis, W. Kamleh, D.B. Leinweber, Z.W. Liu, F.M. Stokes, A.W. Thomas, Search for low-lying lattice QCD eigenstates in the Roper regime. Phys. Rev. D 95(7), 074507 (2017). arXiv:1608.03051 [hep-lat]

    Article  ADS  Google Scholar 

  23. C.W. Andersen, J. Bulava, B. Hörz, C. Morningstar, The elastic \(I=3/2\) \(p\)-wave nucleon–pion scattering amplitude and the \(\Delta (1232)\) resonance from \(N_{\rm f}=2+1\) lattice QCD. arXiv:1710.01557 [hep-lat]

  24. M. Mai, M. Döring, Three-body unitarity in the finite volume. Eur. Phys. J. A , in print arXiv:1709.08222 [hep-lat]

  25. H.-W. Hammer, J.-Y. Pang, A. Rusetsky, Three particle quantization condition in a finite volume: 2. General formalism and the analysis of data. JHEP 1710, 115 (2017). arXiv:1707.02176 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  26. R.A. Briceño, M.T. Hansen, S.R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle \(S\) matrix for relativistic systems of identical scalar particles. Phys. Rev. D 95, 074510 (2017). arXiv:1701.07465 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (CAREER Grant PHY-1452055, NSF/PIF Grant No. 1415459) and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177 and under Grant No. DE-SC001658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Döring.

Additional information

This article belongs to the Topical Collection “NSTAR 2017 - The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döring, M. Developments of the Jülich–Bonn Dynamical Coupled-Channel Analysis. Few-Body Syst 59, 140 (2018). https://doi.org/10.1007/s00601-018-1465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1465-9

Navigation