Skip to main content
Log in

Baryons in the Nuclear Medium

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Many QCD-based models predict changes in the structure of the bound nucleon in the nuclear medium. The changes of the nucleon wave function lead to changes in nucleon structure functions and electromagnetic form factors. While these in-medium form factors are not experimental observables, they provide a natural explanation of a variety of experimental results. I will review some of these findings and discuss upcoming experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.C. Cloët, W. Bentz, A.W. Thomas, Phys. Rev. Lett. 102, 252301 (2009). https://doi.org/10.1103/PhysRevLett.102.252301

    Article  ADS  Google Scholar 

  2. L.S. Celenza, A. Rosenthal, C.M. Shakin, Phys. Rev. C 31, 232 (1985). https://doi.org/10.1103/PhysRevC.31.232

    Article  ADS  Google Scholar 

  3. D.H. Lu, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito, Phys. Lett. B 417, 217 (1998). https://doi.org/10.1016/S0370-2693(97)01385-3

    Article  ADS  Google Scholar 

  4. M.R. Frank, B.K. Jennings, G.A. Miller, Phys. Rev. C 54, 920 (1996). https://doi.org/10.1103/PhysRevC.54.920

    Article  ADS  Google Scholar 

  5. U.T. Yakhshiev, U.G. Meissner, A. Wirzba, Eur. Phys. J. A 16, 569 (2003). https://doi.org/10.1140/epja/i2002-10121-x

    Article  ADS  Google Scholar 

  6. J.R. Smith, G.A. Miller, Phys. Rev. C 70, 065205 (2004). https://doi.org/10.1103/PhysRevC.70.065205

    Article  ADS  Google Scholar 

  7. S. Kondratyuk, K. Kubodera, F. Myhrer, Phys. Rev. C 71, 028201 (2005). https://doi.org/10.1103/PhysRevC.71.028201

    Article  ADS  Google Scholar 

  8. T. Horikawa, W. Bentz, Nucl. Phys. A 762, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.08.002

    Article  ADS  Google Scholar 

  9. G. Ramalho, K. Tsushima, A.W. Thomas, J. Phys. G40, 015102 (2013). https://doi.org/10.1088/0954-3899/40/1/015102

    Article  ADS  Google Scholar 

  10. J.H. Jung, U. Yakhshiev, H.C. Kim, Phys. Rev. D 93(5), 054016 (2016). https://doi.org/10.1103/PhysRevD.93.054016

    Article  ADS  Google Scholar 

  11. S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136

    Article  ADS  Google Scholar 

  12. I.C. Cloet, W. Bentz, A.W. Thomas, Phys. Lett. B 642, 210 (2006). https://doi.org/10.1016/j.physletb.2006.08.076

    Article  ADS  Google Scholar 

  13. V. Sokhoyan, \(N^*\) photoexcitation results from Mainz. in Talk Presented at the 11th International Workshop on the Physics of Excited Nucleons, NSTAR 2017, Columbia, SC, August 20–23 (2017)

  14. C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007). https://doi.org/10.1016/j.ppnp.2007.05.001

    Article  ADS  Google Scholar 

  15. D.H. Barkhuff et al., Phys. Lett. B 470, 39 (1999). https://doi.org/10.1016/S0370-2693(99)01294-0

    Article  ADS  Google Scholar 

  16. B. Hu et al., Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004

    Article  ADS  Google Scholar 

  17. I. Yaron et al., Phys. Lett. B 769, 21 (2017). https://doi.org/10.1016/j.physletb.2017.01.034

    Article  ADS  Google Scholar 

  18. D. Izraeli et al., Phys. Lett. B 781, 107 (2018). https://doi.org/10.1016/j.physletb.2018.03.063

  19. S. Dieterich et al., Phys. Lett. B 500, 47 (2001). https://doi.org/10.1016/S0370-2693(01)00052-1

    Article  ADS  Google Scholar 

  20. S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003). https://doi.org/10.1103/PhysRevLett.91.052301

    Article  ADS  Google Scholar 

  21. M. Paolone et al., Phys. Rev. Lett. 105, 072001 (2010). https://doi.org/10.1103/PhysRevLett.105.072001

    Article  ADS  Google Scholar 

  22. D. Izraeli et al., Phys. Lett. B 781, 95 (2018). https://doi.org/10.1016/j.physletb.2018.03.027

  23. S. Malov et al., Phys. Rev. C 62, 057302 (2000). https://doi.org/10.1103/PhysRevC.62.057302

    Article  ADS  Google Scholar 

  24. C Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev C76, 055206 (2007). https://doi.org/10.1103/PhysRevC.76.055206

    ADS  Google Scholar 

  25. L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301

    Article  ADS  Google Scholar 

  26. O. Hen, D.W. Higinbotham, G.A. Miller, E. Piasetzky, L.B. Weinstein, Int. J. Mod. Phys. E 22, 1330017 (2013). https://doi.org/10.1142/S0218301313300178

    Article  ADS  Google Scholar 

  27. R. Schiavilla, O. Benhar, A. Kievsky, L.E. Marcucci, M. Viviani, Phys. Rev. Lett. 94, 072303 (2005). https://doi.org/10.1103/PhysRevLett.94.072303

    Article  ADS  Google Scholar 

  28. J.M. Udias, J.A. Caballero, E. Moya de Guerra, J.E. Amaro, T.W. Donnelly, Phys. Rev. Lett. 83, 5451 (1999). https://doi.org/10.1103/PhysRevLett.83.5451

    Article  ADS  Google Scholar 

  29. J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, J.M. Udias, Nucl. Phys. A 632, 323 (1998). https://doi.org/10.1016/S0375-9474(97)00817-8

    Article  ADS  Google Scholar 

  30. J.M. Udias, J.R. Vignote, Phys. Rev. C 62, 034302 (2000). https://doi.org/10.1103/PhysRevC.62.034302

    Article  ADS  Google Scholar 

  31. S. Strauch, S. Malace, M. Paolone, Fizika B 20, 149 (2011)

    Google Scholar 

  32. S.P. Malace et al., Phys. Rev. Lett. 106, 052501 (2011). https://doi.org/10.1103/PhysRevLett.106.052501

    Article  ADS  Google Scholar 

  33. Jefferson Lab Experiment E11-002, “Proton Recoil Polarization in the \(^4\)He\((e,e^{\prime }p)^3\)H, \(^2\)H\((e,e^{\prime }p)n\), and \(^1\)H\((e,e^{\prime }p)\) Reactions”, E. Brash, G. Huber, R. Ransome, and S. Strauch, spokespersons

  34. I.C. Cloët, G.A. Miller, E. Piasetzky, G. Ron, Phys. Rev. Lett. 103, 082301 (2009). https://doi.org/10.1103/PhysRevLett.103.082301

    Article  ADS  Google Scholar 

  35. Letter of Intent to JLab PAC 35, “Neutron Properties in the Nuclear Medium Studied by Polarization Measurements”, R. Gilman, D.W. Higinbotham, J. Lichtenstadt, G. Ron, S. Strauch

  36. K.W. McVoy, L. Van Hove, Phys. Rev. 125, 1034 (1962). https://doi.org/10.1103/PhysRev.125.1034

    Article  ADS  Google Scholar 

  37. I.C. Cloët, W. Bentz, A.W. Thomas, Phys. Rev. Lett. 116(3), 032701 (2016). https://doi.org/10.1103/PhysRevLett.116.032701

    Article  ADS  Google Scholar 

  38. J. Morgenstern, Z.E. Meziani, Phys. Lett. B 515, 269 (2001). https://doi.org/10.1016/S0370-2693(01)00873-5

    Article  ADS  Google Scholar 

  39. A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. Lett. 117(8), 082501 (2016). https://doi.org/10.1103/PhysRevLett.117.082501

    Article  ADS  Google Scholar 

  40. Jefferson Lab Experiment E05-110, “Precision Measurement of Longitudinal and Transverse Response Functions of Quasi-Elastic Electron Scattering in the Momentum Transfer Range \(0.55~\text{GeV}/c \le |\mathbf{q}| \le 0.9~ \text{ GeV }/c\)”, S. Choi, J.P. Chen, and Z.E. Meziani, spokespersons

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Strauch.

Additional information

Supported in parts by the U.S. National Science Foundation: NSF PHY-1505615.

This article belongs to the Topical Collection “NSTAR 2017 – The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauch, S. Baryons in the Nuclear Medium. Few-Body Syst 59, 105 (2018). https://doi.org/10.1007/s00601-018-1428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1428-1

Navigation