Skip to main content
Log in

Calculations of Total Classical Cross Sections for a Central Field

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In order to find the total collision cross-section a direct method of the effective potential (EPM) in the framework of classical mechanics was proposed. EPM allows to over come both the direct scattering problem (calculation of the total collision cross-section) and the inverse scattering problem (reconstruction of the scattering potential) quickly and effectively. A general analytical expression was proposed for the generalized Lennard-Jones potentials: (6–3), (9–3), (12–3), (6–4), (8–4), (12–4), (8–6), (12–6), (18–6). The values for the scattering potential of the total cross section for pairs such as electron–N\(_{2}\), N–N, and O–O\(_{2}\) were obtained in a good approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\((m-n)\) :

The generalized Lennard-Jones potential with the degrees m and \(n (m>n)\): \(U(r)=C_{m,n}\epsilon \left( {\left( {\frac{d}{r}} \right) ^{n}-\left( {\frac{d}{r}} \right) ^{m}} \right) =\frac{A}{r^{m}}-\frac{B}{r^{n}}\), J

\(C_{m,n}\) :

\(\frac{n}{n-m}\left( {\frac{n}{m}} \right) ^{\frac{m}{n-m}}\)

U(r):

The scattering potential, J

\(\epsilon \) :

The function minimum, J

d :

The collision diameter, m

\(\alpha \) :

The polarizability, m\(^{3}\)

\(\varepsilon \) :

The dielectric environment permittivity

\(\varepsilon _0\) :

The electric constant, 8.8541 \(\times \) 10\(^{-12}\) F/m

e :

The elementary electronic charge, 1.6021766208 \(\times \) 10\(^{-19}\) Kl

\(\mu \) :

The reduced mass, \(\mu =\frac{m_1 m_2 }{m_1 +m_2 }\) kg

\(v_\infty \) :

The velocity at infinity, m/s

\(p_\infty \) :

The impulse at infinity, kg m/s

\(\rho \) :

The impact parameter, m

\(r^{*}\) :

The first real root of equation \(U(r)=0\), \(r\ge 0\)

References

  1. C.J. Joachain, P.G. Burke, Theory of Electron–Atom Collisions: Part One: Potential Scattering (Springer, Berlin, 1995)

    Google Scholar 

  2. P.G. Burke, R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-15931-2

    Book  MATH  Google Scholar 

  3. I.G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley, New York, 2006). https://doi.org/10.1002/047086334X

    Book  Google Scholar 

  4. E.E. Nikitin, S.Y. Umanskii, Theory of Slow Atomic Collisions (Springer, Berlin, 2012)

    Google Scholar 

  5. V.B. Leonas, Sov. Phys. Usp. (1964). https://doi.org/10.1070/PU1964v007n01ABEH003648

    Google Scholar 

  6. P.L. Huyskens, W.A.P. Luck, T. Zeegers-Huyskens, Intermolecular Forces: An Introduction to Modern Methods and Results (Springer, Berlin, 2011). https://doi.org/10.1002/ange.19921041161

    Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Mechanics, vol. 1 (Elsevier, Amsterdam, 1982)

    Google Scholar 

  8. I.V. Repin, I.A. Sokolova, Algorithms for calculating deflection angle and phase shift. Matem. Mod. 5(4), 76–88 (1993)

    MATH  Google Scholar 

  9. N.N. Kalitkin, N.A. Slavinskaya, I.A. Sokolova, Matem. Mod. 13, 5 (2001)

    Google Scholar 

  10. V.N. Popov, High Temp. (2013). https://doi.org/10.1134/S0018151X13010124

    Google Scholar 

  11. G. Colonna, A. Laricchiuta, Comput. Phys. Commun. (2008). https://doi.org/10.1016/j.cpc.2008.01.039

    Google Scholar 

  12. S.U. Kim, C.W. Monroe, J. Comput. Phys. (2014). https://doi.org/10.1016/j.jcp.2014.05.018

    Google Scholar 

  13. A. Laricchiuta, G. Colonna, D. Bruno, R. Celiberto, C. Gorse, F. Pirani, M. Capitelli, Chem. Phys. Lett. (2007). https://doi.org/10.1016/j.cplett.2007.07.097

    Google Scholar 

  14. D. Frenkel, B. Smit, Understanding Molecular Simulation From Algorithms to Applications, 2nd edn. (Academic Press, Cambridge, 2001)

    MATH  Google Scholar 

  15. M. Capitelli, D. Cappelletti, G. Colonna, C. Gorse, A. Laricchiuta, G. Liuti, S. Longo, F. Pirani, Chem. Phys. (2007). https://doi.org/10.1016/j.chemphys.2007.07.036

    Google Scholar 

  16. F.G. Hoyt, Phys. Rev. 55, 664 (1939)

    Article  ADS  Google Scholar 

  17. O.B. Firsov, JETP 24, 279 (1953)

    Google Scholar 

  18. Sydney Geltman, Topics in Atomic Collision Theory (Academic Press, Cambridge, 2013)

    Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  20. B.M. Smirnov, Phys. Usp. (2001). https://doi.org/10.1070/PU2001v044n12ABEH000959

    Google Scholar 

  21. D.L. Tsyganov, High Temp. (2014). https://doi.org/10.7868/S0040364413060203

    Google Scholar 

  22. D.L. Tsyganov, High Temp. (2017). https://doi.org/10.7868/S0040364417010227

    Google Scholar 

  23. Y. Itikawa, J. Phys. Chem. Ref. Data (2006). https://doi.org/10.1063/1.1937426

    Google Scholar 

  24. B.P. Nikolsky (ed.), Chemist’s Handbook, vol. 1 (Nauka, Leningrad, 1982). (in Russian)

    Google Scholar 

  25. J.R. Stallcop, H. Partridge, E. Levin, Phys. Rev. (2001). https://doi.org/10.1103/PhysRevA.64.042722

    Google Scholar 

  26. J.E. Morgan, H.I. Schiff, Can. J. Chem. (1964). https://doi.org/10.1139/v64-337

    Google Scholar 

  27. F. Pirani, D. Cappelletti, V. Aquilanti, in Molecular Physics and Hypersonic Flows, ed. by M. Capitelli (Kluwer Academic, Dordrecht, 1996), p. 351

    Chapter  Google Scholar 

  28. B. Brunetti, G. Liuti, E. Luzzatti, F. Pirani, F. Vecchiocattivi, J. Chem. Phys. (1981). https://doi.org/10.1063/1.441130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Tsyganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, D.L. Calculations of Total Classical Cross Sections for a Central Field. Few-Body Syst 59, 74 (2018). https://doi.org/10.1007/s00601-018-1394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1394-7

Navigation