Skip to main content
Log in

Structure of Helium–Alkali Pentamers

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We report a diffusion Monte Carlo study of helium–alkali pentamers \(^4\)He\(_4\)A, \(^3\)He\({}^4\)He\(_3\)A and \(^3\)He\(_2{}^4\)He\(_2\)A, where A is one of the alkali atoms \(^{6,7}\)Li, \(^{23}\)Na, \(^{39,40,41}\)K, \(^{85,87}\)Rb or \(^{133}\)Cs. Exact ground state properties, binding energies and structure, were extracted for selected interaction models. Studied five-body systems show wide spatial extent, which is one of the halo state characteristics. For that reason they are expected to be very close to the halo limit. Calculated pair distributions and density profiles enabled insight into atom arrangements when adding different masses of alkali metals to the halo and quai-halo helium tetramers. Four helium atoms mainly group on one side of an alkali metal, surrounding it extremely rarely and only when \(^3\)He is present. Only occasionally \(^3\)He\(_2{}^4\)He\(_2\) surround the smallest alkali—Li, less frequently Na, almost never bigger A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Efimov, Phys. Lett. 33B, 563 (1970)

    Article  ADS  Google Scholar 

  2. N. Pascal, S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

    Article  ADS  Google Scholar 

  3. B. Bazak, D.S. Petrov, Phys. Rev. Lett. 118, 083002 (2017)

    Article  ADS  Google Scholar 

  4. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)

    Article  ADS  Google Scholar 

  5. K. Riisager, Phys. Scr. T152, 014001 (2013)

    Article  ADS  Google Scholar 

  6. P. Stipanović, L. Vranješ Markić, I. Bešlić, J. Boronat, Phys. Rev. Lett. 113, 253401 (2014)

    Article  ADS  Google Scholar 

  7. P. Stipanović, L. Vranješ Markić, J. Boronat, J. Phys. Chem. A 121, 308 (2016)

    Article  Google Scholar 

  8. J. Yuan, C.D. Lin, J. Phys. B 31, L637 (1998)

    Article  ADS  Google Scholar 

  9. I. Baccarelli, G. Delgado-Barrio, F.A. Gianturco, T. González-Lezana, S. Miret-Artés, P. Villarreal, Phys. Chem. Chem. Phys. 2, 4067 (2000)

    Article  Google Scholar 

  10. A. Delfino, T. Frederico, L. Tomio, J. Chem. Phys. 113, 7874 (2000)

    Article  ADS  Google Scholar 

  11. I. Baccarelli, G. Delgado, F.A. Gianturco, T. González-Lezana, S. Miret-Artés, P. Villarreal, Europhys. Lett. 50, 567 (2000)

    Article  ADS  Google Scholar 

  12. C. Di Paola, F.A. Gianturco, F. Paesani, G. Delgado Barrio, S. Miret-Artés, P. Villarreal, I. Baccarelli, T. González-Lezana, J. Phys. B 85, 2643 (2002)

    Article  Google Scholar 

  13. M.T. Yamashita, R.S. Marques de Carvalho, Lauro Tomio, T. Frederico, Phys. Rev. A 68, 012506 (2003)

    Article  ADS  Google Scholar 

  14. C. Di Paola, F.A. Gianturco, Eur. Phys. J. D 35, 513 (2005)

    Article  ADS  Google Scholar 

  15. Y. Li, Q. Gou, T. Shi, Phys. Rev. A 74, 032502 (2006)

    Article  ADS  Google Scholar 

  16. Y. Li, W. Zhang, Q. Gou, H. Song, T. Shi, Phys. Rev. A 82, 022515 (2010)

    Article  ADS  Google Scholar 

  17. H. Suno, B.D. Esry, Phys. Rev. A 82, 062521 (2010)

    Article  ADS  Google Scholar 

  18. H. Suno, E. Hiyama, M. Kamimura, Few Body Syst. 54, 1557 (2013)

    Article  ADS  Google Scholar 

  19. H. Suno, B.D. Esry, Phys. Rev. A 89, 052701 (2014)

    Article  ADS  Google Scholar 

  20. P. Stipanović, L. Vranješ Markić, D. Zarić, J. Boronat, J. Chem. Phys. 146, 014305 (2017)

    Article  ADS  Google Scholar 

  21. P. Stipanović, L. Vranješ Markić, J. Boronat, Few Body Syst. 58, 123 (2017)

    Article  ADS  Google Scholar 

  22. E.A. Kolganova, Few Body Syst. 58, 57 (2017)

    Article  ADS  Google Scholar 

  23. H. Suno, Phys. Rev. A 96, 012508 (2017)

    Article  ADS  Google Scholar 

  24. N. Tariq, N. Al Taisan, V. Singh, J.D. Weinstein, Phys. Rev. Lett. 110, 153201 (2013)

    Article  ADS  Google Scholar 

  25. O. Bunermann, G. Droppelmann, A. Hernando, R. Mayol, F. Stienkemeier, J. Phys. Chem. A 111, 12684 (2007)

    Article  Google Scholar 

  26. F. Lackner, G. Krois, W.E. Ernst, J. Chem. Phys. 147, 184302 (2017)

    Article  ADS  Google Scholar 

  27. A. Nakayama, K. Yamashita, J. Chem. Phys. 114, 780 (2001)

    Article  ADS  Google Scholar 

  28. F. Lackner, J. Poms, G. Krois, J.V. Pototschnig, W.E. Ernst, J. Phys. Chem. A 117, 11866 (2013)

    Article  Google Scholar 

  29. E. Loginov, M. Drabbels, J. Phys. Chem. A 118, 2738 (2014)

    Article  Google Scholar 

  30. F. Ancilotto, M. Barranco, F. Coppens, J. Eloranta, N. Halberstadt, A. Hernando, D. Mateo, M. Pi, Int. Rev. Phys. Chem. 36, 621 (2017)

    Article  Google Scholar 

  31. J. Voigtsberger, S. Zeller, J. Becht, N. Neumann, F. Sturm, H.-K. Kim, M. Waitz, F. Trinter, M. Kunitski, A. Kalinin, J. Wu, W. Schöllkopf, D. Bressanini, A. Czasch, J.B. Williams, K. Ullmann-Pfleger, L. Ph, H. Schmidt, M.S. Schöffler, R.E. Grisenti, T. Jahnke, R. Dörner, Nat. Commun. 5, 5765 (2014)

    Article  Google Scholar 

  32. M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. Ph, H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R.E. Grisenti, T. Jahnke, D. Blume, R. Dörner, Science 348, 551 (2015)

    Article  ADS  Google Scholar 

  33. O. Kornilov, Science 348, 498 (2015)

    Article  ADS  Google Scholar 

  34. S. Zeller et al., PNAS 113, 14651 (2016)

    Article  ADS  Google Scholar 

  35. J. Boronat, J. Casulleras, Phys. Rev. B 49, 8920 (1994)

    Article  ADS  Google Scholar 

  36. J. Casulleras, J. Boronat, Phys. Rev. B 52, 3654 (1995)

    Article  ADS  Google Scholar 

  37. R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)

    Article  ADS  Google Scholar 

  38. P. Stipanović, L. Vranješ Markić, J. Boronat, J. Phys. B At. Mol. Opt. Phys. 49, 185101 (2016)

    Article  ADS  Google Scholar 

  39. U. Kleinekathofer, M. Lewerenz, M. Mladenovic, Phys. Rev. Lett. 83, 4717 (1999)

    Article  ADS  Google Scholar 

  40. D. Bressanini, J. Phys. Chem. A 118, 6521 (2014)

    Article  Google Scholar 

  41. P. Stipanović, L. Vranješ Markić, J. Boronat, B. Kežić, J. Chem. Phys. 134, 054509 (2011)

    Article  ADS  Google Scholar 

  42. J. Höller, E. Krotscheck, R.E. Zillich, Eur. Phys. J. D 69, 198 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation under the Project Number IP-2014-09-2452. The computational resources of the Isabella cluster at Zagreb University Computing Center (Srce), the HYBRID cluster at the University of Split, Faculty of Science and Croatian National Grid Infrastructure (CRO NGI) were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Stipanović.

Additional information

This article belongs to the Topical Collection “Critical Stability of Quantum Few-Body Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stipanović, P., Vranješ Markić, L. Structure of Helium–Alkali Pentamers. Few-Body Syst 59, 45 (2018). https://doi.org/10.1007/s00601-018-1367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1367-x

Navigation