Skip to main content
Log in

Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004)

    Article  ADS  Google Scholar 

  2. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, TonksGirardeau gas of ultracold atoms in an optical lattice. Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  3. T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)

    Article  ADS  Google Scholar 

  4. E. Haller, M. Gustavsson, M.J. Mark, J.G. Danzl, R. Hart, G. Pupillo, H.-C. Nägerl, Realization of an excited. Strongly correlated quantum gas phase. Science 325, 1224 (2009)

    Article  ADS  Google Scholar 

  5. F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Deterministic preparation of a tunable few-fermion system. Science 332, 336 (2011)

    Article  ADS  Google Scholar 

  6. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013)

    Article  ADS  Google Scholar 

  7. S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the hubbard model. Phys. Rev. Lett. 114, 080402 (2015)

    Article  ADS  Google Scholar 

  8. S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S.M. Reimann, L. Santos, T. Lompe, S. Jochim, Antiferromagnetic Heisenberg spin chain of few cold atoms in a one-dimensional trap. Phys. Rev. Lett. 115, 215301 (2015)

    Article  ADS  Google Scholar 

  9. M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  10. M.D. Girardeau, A. Minguzzi, Soluable models of strongly interacting ultracold gas mixtures in tight waveguides. Phys. Rev. Lett. 99, 230402 (2007)

    Article  ADS  Google Scholar 

  11. F. Deuretzbacher, K. Fredenhagen, D. Becker, K. Bongs, K. Sengstock, D. Pfannkuche, Exact solution of strongly interacting quasi-one dimensional spinor Bose gases. Phys. Rev. Lett. 100, 160408 (2008)

    Article  Google Scholar 

  12. C.N. Yang, Ground state of fermions in a 1D trap with \(\delta \) function interaction. Chin. Phys. Lett. 26, 120504 (2009)

    Article  ADS  Google Scholar 

  13. L. Guan, S. Chen, Y. Wang, Z.-Q. Ma, Exact solutions for infinitely strongly interacting Fermi gases in tight waveguides. Phys. Rev. Lett. 102, 160402 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Z.-Q. Ma, S. Chen, L. Guan, Y. Wang, Mathematical calculation for exact solutions of infinitely strongly interacting Fermi gases in tight waveguides. J. Phys. A 42, 385210 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.D. Girardeau, G.E. Astrakharchik, Wave functions of the super-Tonks–Girardeau gas and the trapped one-dimensional hard-sphere Bose gas. Phys. Rev. A 81, 061601(R) (2010)

    Article  ADS  Google Scholar 

  16. M.D. Girardeau, Two super-Tonks–Girardeau states of a trapped one-dimensional spinor Fermi gas. Phys. Rev. A 82, 011607(R) (2010)

    Article  ADS  Google Scholar 

  17. M.D. Girardeau, Tonks–Girardeau and super-Tonks–Girardeau states of a trapped one-dimensional spinor Bose gas. Phys. Rev. A 83, 011601(R) (2011)

    Article  ADS  Google Scholar 

  18. B. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, A. Minguzzi, Exact solution for the degenerate ground-state of a strongly interacting one-dimensional Bose–Fermi mixture. Phys. Rev. A 84, 023626 (2011)

    Article  ADS  Google Scholar 

  19. X. Cui, T.-L. Ho, Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases. Phys. Rev. A 89, 023611 (2014)

    Article  ADS  Google Scholar 

  20. N.L. Harshman, One dimension, two-body interactions, few particles: II. \(N\) particles. Few-Body Syst. 57, 45–69 (2016)

    Article  ADS  Google Scholar 

  21. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Deuretzbacher, D. Becker, J. Bjerlin, S.M. Reimann, L. Santos, Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Phys. Rev. A 90, 013611 (2014)

    Article  ADS  Google Scholar 

  23. A.G. Volosniev, D.V. Fedorov, A.S. Jensen, M. Valiente, N.T. Zinner, Strongly interacting confined quantum systems in one dimension. Nat. Comm. 5, 5300 (2014)

    Article  ADS  Google Scholar 

  24. J. Levinsen, P. Massignan, G.M. Bruun, M.M. Parish, Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential. Sci. Adv. 1, e1500197 (2015)

    Article  ADS  Google Scholar 

  25. S.E. Gharashi, X.Y. Yin, Y. Yan, D. Blume, One-dimensional Fermi gas with a single impurity in a harmonic trap: perturbative description of the upper branch. Phys. Rev. A 91, 013620 (2015)

    Article  ADS  Google Scholar 

  26. L. Yang, L. Guan, H. Pu, Strongly interacting quantum gases in one-dimensional traps. Phys. Rev. A 91, 043634 (2015)

    Article  ADS  Google Scholar 

  27. J. Decamp, P. Armagnat, B. Fang, M. Albert, A. Minguzzi, P. Vignolo, Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides. New J. Phys. 18, 055011 (2016)

    Article  ADS  Google Scholar 

  28. N.J.S. Loft, L.B. Kristensen, A.E. Thomsen, A.G. Volosniev, N.T. Zinner, CONAN the cruncher of local exchange coefficients for strongly interacting confined systems in one dimension. Comp. Phys. Comm. 209, 171–182 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. N.L. Harshman, in Infinite Barriers and Symmetries for a Few Trapped Particles in One Dimension (2016). arXiv:1608.07189

  30. N.L. Harshman, One dimension, two-body interactions, few particles: II. 1, 2, and 3 Particles. Few Body Syst. 57, 11–43 (2016)

    Article  ADS  Google Scholar 

  31. A.M. Kaufman, B.J. Lester, C.M. Reynolds, M.L. Wall, M. Foss-Feig, K.R.A. Hazzard, A.M. Rey, C.A. Regal, Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A.M. Kaufman, B.J. Lester, M. Foss-Feig, M.L. Wall, A.M. Rey, C.A. Regal, Entangling two transportable neutral atoms via local spin exchange. Nature 527, 208 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Harshman.

Additional information

This article belongs to the Topical Collection “The 23rd European Conference on Few-Body Problems in Physics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshman, N.L. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit. Few-Body Syst 58, 41 (2017). https://doi.org/10.1007/s00601-017-1214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1214-5

Navigation