Skip to main content
Log in

Hadron Phenomenology from First-Principle QCD Studies

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The form of the kernel that controls the dynamics of the Bethe–Salpeter equations is essential for obtaining quantitatively accurate predictions for the observable properties of hadrons. In the present work we briefly review the basic physical concepts and field-theoretic techniques employed in a first-principle derivation of a universal (process-independent) component of this kernel. This “top-down” approach combines nonperturbative ingredients obtained from lattice simulations and Dyson–Schwinger equations, and furnishes a renormalization-group invariant quark-gluon interaction strength, which is in excellent agreement with the corresponding quantity obtained from a systematic “bottom-up” treatment, where bound-state data are fitted within a well-defined truncation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain P., Munczek H.J.: Q anti-q bound states in the Bethe-Salpeter formalism. Phys. Rev. D 48, 5403 (1993)

    Article  ADS  Google Scholar 

  2. Munczek H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations. Phys. Rev. D 52, 4736 (1995)

    Article  ADS  Google Scholar 

  3. Bender A., Roberts C.D., Von Smekal L.: Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B 380, 7 (1996)

    Article  ADS  Google Scholar 

  4. Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267 (1998)

    Article  ADS  Google Scholar 

  5. Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe-Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)

    Article  ADS  Google Scholar 

  6. Chang L., Roberts C.D.: Sketching the Bethe-Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fischer C.S., Williams R.: Probing the gluon self-interaction in light mesons. Phys. Rev. Lett. 103, 122001 (2009)

    Article  ADS  Google Scholar 

  8. Eichmann, G.: Hadron Properties from QCD Bound States. arXiv:0909.0703 [hep-ph]

  9. Eichmann G., Cloet I.C., Alkofer R., Krassnigg A., Roberts C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202 (2009)

    Article  ADS  Google Scholar 

  10. Roberts C.D., Williams A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)

    Article  ADS  Google Scholar 

  11. Maris P., Roberts C.D.: Dyson-Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297 (2003)

    Article  ADS  Google Scholar 

  12. Binosi D., Chang L., Papavassiliou J., Roberts C.D.: Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183 (2015)

    Article  ADS  Google Scholar 

  13. Ball J.S., Chiu T.W.: Analytic properties of the vertex function in gauge theories. 1. Phys. Rev. D 22, 2550 (1980)

    Article  ADS  Google Scholar 

  14. Ball J.S., Chiu T.W.: Analytic properties of the vertex function in gauge theories. 2. Phys. Rev. D 23, 3085 (1981)

    Article  ADS  Google Scholar 

  15. Aguilar A.C., Binosi D., Papavassiliou J.: Indirect determination of the Kugo-Ojima function from lattice data. JHEP 0911, 066 (2009)

    Article  ADS  Google Scholar 

  16. Binosi D., Papavassiliou J.: Pinch technique: theory and applications. Phys. Rep. 479, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Abbott L.F.: The background field method beyond one loop. Nucl. Phys. B 185, 189 (1981)

    Article  ADS  Google Scholar 

  18. Binosi D., Papavassiliou J.: Pinch technique and the Batalin-Vilkovisky formalism. Phys. Rev. D 66, 025024 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Aguilar A.C., Binosi D., Papavassiliou J.: Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations. Phys. Rev. D 78, 025010 (2008)

    Article  ADS  Google Scholar 

  20. Aguilar A.C., Binosi D., Papavassiliou J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)

    Article  ADS  Google Scholar 

  21. Bogolubsky I.L., Ilgenfritz E.M., Muller-Preussker M., Sternbeck A.: Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared. Phys. Lett. B 676, 69 (2009)

    Article  ADS  Google Scholar 

  22. Aguilar A.C., Ibanez D., Papavassiliou J.: Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations. Phys. Rev. D 87(11), 114020 (2013)

    Article  ADS  Google Scholar 

  23. Boucaud P., De Soto F., Leroy J.P., Le Yaouanc A., Micheli J., Pene O., Rodriguez J.-Q.: Ghost-gluon running coupling, power corrections and the determination of Lambda (MS-bar). Phys. Rev. D 79, 014508 (2009)

    Article  ADS  Google Scholar 

  24. Cloet I.C., Roberts C.D.: Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1 (2014)

    Article  ADS  Google Scholar 

  25. Maris P., Tandy P.C.: Interaction model for the gap equation. Phys. Rev. C 60, 055214 (1999)

    Article  ADS  Google Scholar 

  26. Qin S.X., Chang L., Liu Y.X., Roberts C.D., Wilson D.J.: Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 84, 042202 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joannis Papavassiliou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papavassiliou, J. Hadron Phenomenology from First-Principle QCD Studies. Few-Body Syst 57, 417–423 (2016). https://doi.org/10.1007/s00601-016-1065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1065-5

Keywords

Navigation