Skip to main content
Log in

Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We have investigated in this paper the few-body bound systems in a simple semi-relativistic scheme. For this aim, we introduced a spin independent relativistic description for a few-identical body system by presenting the analytical solution of few-particle Klein–Gordon equation. Performing calculations in D-dimensional configuration on the basis of the hypercentral approach, we reduced the few-body Klein–Gordon equation to a Schrödinger-like form. This equation is solved by using the Nikiforov–Uvarov method, through which the energy equations and eigenfunctions for a few-body bound system are obtained. We used the spin- and isospin-independent generalized Yukawa potential in our calculations, and the dependence of the few-body binding energies on the potential parameters has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabre de la Ripelle M., Fiedeldey H., Sofianos S.A.: Integrodifferential equation for few- and many-body systems. Phys. Rev. C 38, 449 (1988)

    Article  ADS  Google Scholar 

  2. Adam R.M., Fiedeldey H.: \({^5{\rm He}}\) and \({^6{\rm He}}\) calculations by means of the integrodifferential equation approach. J. Phys. G Nucl. Part. Phys. 19, 703 (1993)

    Article  ADS  Google Scholar 

  3. Carlson J., Schiavilla R.: Structure and dynamics of few-nucleon systems. Rev. Mod. Phys. 70, 743 (1998)

    Article  ADS  Google Scholar 

  4. Barnea N., Leidemann W., Orlandini G.: Ground state wave functions in the hyperspherical formalism for nuclei with A\({ > }\)4. Nucl. Phys. A 650, 427 (1999)

    Article  ADS  Google Scholar 

  5. Rajabi A.A.: Exact analytical solution of the Schrödinger equation for an N-identical body-force system. Few-Body Syst. 37, 197 (2005)

    Article  ADS  Google Scholar 

  6. Sofianos S.A., Rampho G.J., Adam R.M.: Two-dimensional integrodifferential equations for multi-strange hypernuclei. Mod. Phys. Lett. A 24, 1027 (2009)

    Article  ADS  MATH  Google Scholar 

  7. Rice R.A., Kim Y.E.: Formulation of few-body equations without partial waves. Few-Body Syst. 14, 127 (1993)

    Article  ADS  Google Scholar 

  8. Viviani M., Kievsky A., Rosati S.: Calculation of the \({\alpha }\)-particle ground state within the hyperspherical harmonic basis. Phys. Rev. C 71, 024006 (2005)

    Article  ADS  Google Scholar 

  9. Platter L., Hammer H.W., Meißner U.-G.: Four-boson system with short-range interactions. Phys. Rev. A 70, 052101 (2004)

    Article  ADS  Google Scholar 

  10. Hadizadeh M.R., Bayegan S.: Four-body bound-state calculations in three-dimensional approach. Few-Body Syst. 40, 171 (2007)

    Article  ADS  Google Scholar 

  11. Hou C.F., Zhou Z.X.: LI Y.: Bound states of the Klein-Gordon equation with vector and scalar Wood-Saxon potentials. Chin. Phys. B 8, 8 (1999)

    Google Scholar 

  12. Dominguez-Adame F.: Bound states of the Klein-Gordon equation with vector and scalar Hulthén-type potentials. Phys. Lett. A 136, 175 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen G., Chen Z.D., Lou Z.M.: Exact bound state solutions of the s-wave Klein-Gordon equation with the generalized Hulthén potential. Phys. Lett. A 331, 374 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Şimşek M., Eğrifes H.: The Klein-Gordon equation of generalized Hulthén potential in complex quantum mechanics. J. Phys. A Math. Gen. 37, 4379 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Ma Z.Q., Dong S.H., Gu X.Y., Yu J., Lozada-Cassou M.: The Klein-Gordon equation with a coulomb plus scalar potential in d dimensions. Int. J. Mod. Phys. E 13, 597 (2004)

    Article  ADS  Google Scholar 

  16. Ibrahim T.T., Oyewumi K.J., Wyngaardt S.M.: Analytical solution of N-dimensional Klein-Gordon and Dirac equations with Rosen-Morse potential. Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  17. Ikot A.N. et al.: Approximate solutions of D-dimensional Klein-Gordon equation with modified Hylleraas potential. Few-Body Syst. 54, 2041 (2013)

    Article  ADS  Google Scholar 

  18. Sharma L.K. et al.: Potentials for the Klein-Gordon and Dirac Equations. Chiang Mai J. Sci. 38, 514 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Aslanzadeh M., Rajabi A.A.: Analytical solution of relativistic three-body bound systems. Eur. Phys. J. A 50, 151 (2014)

    Article  Google Scholar 

  20. Giannini M.M., Santopinto E., Vassallo A.: An overview of the hypercentral constituent quark model. Prog. Part. Nucl. Phys. 50, 263 (2003)

    Article  ADS  Google Scholar 

  21. Giannini M.M., Santopinto E., Vassallo A.: The hypercentral constituent quark model. Nucl. Phys. A 699, 308 (2002)

    Article  ADS  Google Scholar 

  22. Santopinto E., Iachello F., Giannini M.M.: Exactly solvable models of baryon spectroscopy. Nucl. Phys. A 623, 100 (1997)

    Article  ADS  Google Scholar 

  23. Lin C.D.: Hyperspherical coordinate approach to atomic and other Coulombic three-body systems. Phys. Rep. 257, 1 (1995)

    Article  ADS  Google Scholar 

  24. Krivec R.: FBS colloquium hyperspherical-harmonics methods for few-body problems. Few-Body Syst. 25, 199 (1998)

    Article  ADS  Google Scholar 

  25. Hassanabadi H., Rajabi A.A.: Relativistic versus nonrelativistic solution of the N-fermion problem in a hyperradius-confining potential. Few-Body Syst. 41, 201 (2007)

    Article  ADS  Google Scholar 

  26. Rajabi A.A.: A method to solve the Schrödinger equation for any power hypercentral potentials. Commun. Theor. Phys. 48, 151 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Avery J., Larsen P.S., Hengyi S.: The quantum-mechanical many-body problem in hyperspherical coordinates analysis of systems with coulomb interactions in terms of many-dimensional hydrogen-like wavefunctions. Int. J. Quantum Chem. 29, 129 (1986)

    Article  Google Scholar 

  28. Ballot J.L., Fabredela~Ripelle M.: Application of the hyperspherical formalism to the trinucleon bound state problems. Ann. Phys. 127, 62 (1980)

    Article  ADS  Google Scholar 

  29. Hassanabadi H., Zarrinkamar S., Hamzavi M., Rajabi A.A.: Relativistic spinless bosons in exponential fields. Few-Body Syst. 51, 69 (2011)

    Article  ADS  Google Scholar 

  30. Giannini M.M., Santopinto E., Vassallo A.: Hypercentral constituent quark model and isospin dependence. Eur. Phys. J. A 12, 447 (2001)

    Article  ADS  Google Scholar 

  31. Zernike F., Brinkman H.C.: Hypersphärische Funktionen und die in sphärische Bereichen orthogonalen Polynome. Proc. Akad. Wet. Amst. 38, 161 (1935)

    Google Scholar 

  32. Gattobigio M., Kievsky A., Viviani M., Barletta P.: Harmonic hyperspherical basis for identical particles without permutational symmetry. Phys. Rev. A 79, 032513 (2009)

    Article  ADS  Google Scholar 

  33. Aqulanti V., Tonzano S.: Three-body problem in quantum mechanics: hyperspherical elliptic coordinates and harmonic basis sets. J. Chem. Phys. 120, 4066 (2004)

    Article  ADS  Google Scholar 

  34. Yukawa H.: On the interaction of elementary particles. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  35. Yahya W.A., Oyewumi K.J., Akoshile C.O., Ibrahim T.T.: Bound states of the relativistic dirac equation with equal scalar and vector Eckart potentials using the Nikiforov-Uvarov Method. J. Vec. Rel. 5, 27 (2010)

    Google Scholar 

  36. Hassanabadi H., Maghsoodi E., Zarrinkamar S., Rahimov H.: Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarov method. J. Math. Phys. 53, 022104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ikhdair S.M., Sever R.: Improved analytical approximation to arbitrary l-state solutions of the Schrödinger equation for the hyperbolical potential. Ann. Phys. (Berlin) 18, 189 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nikiforov A.F., Uvarov V.B.: Special Functions of Mathematical Physics, 1st edn. Birkhauser, Basel, Switzerland (1988)

    Book  MATH  Google Scholar 

  39. Zhang M.C., Sun G.H., Dong S.H.: Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential. Phys. Lett. A 374, 704 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Szego G.: Orthogonal Polynomials, revised edn. American Mathematical Society, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aslanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanzadeh, M., Rajabi, A.A. Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential. Few-Body Syst 57, 145–154 (2016). https://doi.org/10.1007/s00601-015-1035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1035-3

Keywords

Navigation