Skip to main content
Log in

Quantification of Entanglement Entropy in Helium by the Schmidt–Slater Decomposition Method

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we present an investigation on the spatial entanglement entropies in the helium atom by using highly correlated Hylleraas functions to represent the S-wave states. Singlet-spin 1sns 1 S e states (with n = 1 to 6) and triplet-spin 1sns 3 S e states (with n = 2 to 6) are investigated. As a measure on the spatial entanglement, von Neumann entropy and linear entropy are calculated. Furthermore, we apply the Schmidt–Slater decomposition method on the two-electron wave functions, and obtain eigenvalues of the one-particle reduced density matrix, from which the linear entropy and von Neumann entropy can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manzano D., Plastino A.R., Dehesa J.S., Koga T.: Quantum entanglement in two-electron atomic models. J. Phys. A: Math. Theor. 43, 275301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. Coe J.P., D’Amico I.: The entanglement of few-particle systems when using the local-density approximation. J. Phys. Conf. Ser. 254, 012010 (2010)

    Article  ADS  Google Scholar 

  3. Dehesa J.S., Koga T., Yanez R.J., Plastino A.R., Esquivel R.O.: Quantum entanglement in helium. J. Phys. B Atomic Mol. Opt. Phys. 45, 015504 (2012)

    Article  ADS  Google Scholar 

  4. Dehesa J.S., Koga T., Yanez R.J., Plastino A.R., Esquivel R.O.: Corrigendum: Quantum entanglement in helium. J. Phys. B Atomic Mol. Opt. Phys. 45, 239501 (2012)

    Article  ADS  Google Scholar 

  5. Osenda O., Serra P.: Scaling of the von Neumann entropy in a two-electron system near the ionization threshold. Phys. Rev. A 75, 042331 (2007)

    Article  ADS  Google Scholar 

  6. Lin Y.-C., Lin C.-Y., Ho Y.K.: Spatial entanglement in two-electron atomic systems. Phys. Rev. A 87, 022316 (2013)

    Article  ADS  Google Scholar 

  7. Benenti G., Siccardi S., Strini G.: Entanglement in helium. Euro. Phys. J. D 67, 83 (2013)

    Article  ADS  Google Scholar 

  8. Lin C.-H., Lin Y.-C., Ho Y.K.: Quantification of linear entropy for quantum entanglement in He, H and Ps ions using highly-correlated hylleraas functions. Few-Body Syst. 54, 2147 (2013)

    Article  ADS  Google Scholar 

  9. Lin, Y.-C., Ho, Y.K.: Quantum entanglement for two electrons in the excited states of helium-like systems, e-print: arXiv:1307.5532

  10. Abdullah S., Coe J.P., D’Amico I.: Effect of confinement potential geometry entanglement in quantum dot-based nanostructures. Phys. Rev. B 80, 235302 (2009)

    Article  ADS  Google Scholar 

  11. Nazmitdinov R.G., Simonovi’c N.S., Plastino A.R., Chizhov A.V.: Shape transitions in excited states of two-electron quantum dots in a magnetic field. J. Phys. B: At. Mol. Opt. Phys. 45, 205503 (2012)

    Article  ADS  Google Scholar 

  12. Okopinska A., Koscik P.: Correlation and entanglement in elliptically deformed two-electron quantum dots. Few-Body Syst. 50, 413 (2011)

    Article  ADS  Google Scholar 

  13. Coden D.S.A., Romero R.H., Ferr’on A., Gomez S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B: At. Mol. Opt. Phys. 46, 065501 (2013)

    Article  ADS  Google Scholar 

  14. Schroter S., Friedrich H., Madronero J.: Considerations on Hund’s first rule in a planar two-electron quantum dot. Phy. Rev. A 87, 042507 (2013)

    Article  ADS  Google Scholar 

  15. Kościk P.: Entanglement in S states of two-electron quantum dots with Coulomb impurities at the center. Phys. Lett. A 377, 2393 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. Koscik P.: Quantum correlations of a few bosons within a harmonic trap. Few-Body Syst. 52, 49 (2012)

    Article  ADS  Google Scholar 

  17. Okopinska A., Koscik P.: Entanglement of two charged bosons in strongly anisotropic traps. Few-Body Syst. 54, 629 (2013)

    Article  ADS  Google Scholar 

  18. Naik D.S., Peterson C.G., White A.G., Berglund A.J., Kwiat P.G.: Entangled state quantum cryptography: eavesdropping on the Ekert protocol. Phys. Rev. Lett. 84, 4733 (2000)

    Article  ADS  Google Scholar 

  19. Zhao M.-J., Fei S.-M., Li-Jost X.: Complete entanglement witness for quantum teleportation. Phys. Rev. A 85, 054301 (2012)

    Article  ADS  Google Scholar 

  20. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Tichy M.C., Mintert F., Buchleitner A.: Essential entanglement for atomic and molecular physics. J. Phys. B: At. Mol. Opt. Phys. 44, 192001 (2011)

    Article  ADS  Google Scholar 

  22. Hofer T.S.: On the basis set convergence of electron-electron entanglement measures: helium-like systems. Front. Chem.: Theor. Comput. Chem. 1, 24 (2013)

    Google Scholar 

  23. Huang Z., Wang H., Kais S.: Entanglement and electron correlation in quantum chemistry calculations. J. Mod. Opt. 53, 2543 (2006)

    Article  ADS  Google Scholar 

  24. Tan S.S., Ho Y.K.: Determination of resonance energy and width by calculation of the density of resonance states using the stabilization method. Chin. J. Phys. 35, 701 (1997)

    Google Scholar 

  25. Ho Y.K.: Recent advances in the theoretical methods and computational schemes for investigations of resonances in few-body atomic systems. Few-Body Syst. 54, 31 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew Kam Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Ho, Y.K. Quantification of Entanglement Entropy in Helium by the Schmidt–Slater Decomposition Method. Few-Body Syst 55, 1141–1149 (2014). https://doi.org/10.1007/s00601-014-0900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0900-9

Keywords

Navigation