Skip to main content
Log in

Current review of machine perfusion in liver transplantation from the Japanese perspective

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer‐term outcomes, late biliary complications, outcomes in specific high‐risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver‐directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCD:

Donation after cardiac death

DBD:

Donation after brain death

MP:

Machine perfusion

SCS:

Static cold storage

HMP:

Hypothermic machine perfusion

NMP:

Normothermic machine perfusion

SNMP:

Subnormothermic machine perfusion

HOPE:

Hypothermic oxygenated machine perfusion

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

IRI:

Ischemia/reperfusion injury

ATP:

Adenosine triphosphate

References

  1. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. Consortium for organ preservation in Europe. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557:50–6.

    CAS  PubMed  Google Scholar 

  2. United Network for Organ Sharing. http://.unos.org/. Accessed April 29, 2020.

  3. Japanese liver transplantation society (2018). Liver Transplantation in Japan -Registry by the Japanese Liver Transplantation Society-. Ishoku 109–123.

  4. Makuuchi M. Living donor liver transplantation: looking back at my 30 years of experience. Surg Today. 2019;49(4):288–94.

    PubMed  Google Scholar 

  5. Yoshizumi T, Mori M. Portal flow modulation in living donor liver transplantation: review with a focus on splenectomy. Surg Today. 2020;50(1):21–9. https://doi.org/10.1007/s00595-019-01881-y (Epub 2019 Sep 25. Erratum in: Surg Today. 2020 Apr; 50(4):423).

    Article  CAS  PubMed  Google Scholar 

  6. Todo S, Nery J, Yanaga K, Podesta L, Gordon RD, Starzl TE. Extended preservation of human liver grafts with UW solution. J Am Med Assoc. 1989;261:711–4.

    CAS  Google Scholar 

  7. Saidi RF. Utilization of expanded criteria donors in liver transplantation. Int J Organ Transplant Med. 2013;4:46–59.

    PubMed  PubMed Central  Google Scholar 

  8. Dutkowski P, de Rougemont O, Clavien PA. Alexis carrel: genius, innovator and ideologist. Am J Transplant. 2008;8(1):998–2003.

    Google Scholar 

  9. Starzl TE, Marchioro TL, Porter KA, Brettschneider L. Homotransplantation of the liver. Transplantation. 1967;5:790–803.

    PubMed Central  Google Scholar 

  10. Marecki H, Bozorgzadeh A, Porte RJ, Leuvenink HG, Uygun K, Martins PN. Liver ex situ machine perfusion preservation: a review of the methodology and results of large animal studies and clinical trials. Liver Transpl. 2017;23:679–95.

    PubMed  Google Scholar 

  11. Polyak MM, Arrington BO, Stubenbord WT, Boykin J, Brown T, Jean-Jacques MA, et al. The influence of pulsatile preservation on renal transplantation in the 1990s. Transplantation. 2000;69:249–58.

    CAS  PubMed  Google Scholar 

  12. Schold JD, Kaplan B, Howard RJ, Reed AI, Foley DP, Meier-Kriesche HU. Are we frozen in time? Analysis of the utilization and efficacy of pulsatile perfusion in renal transplantation. Am J Transplant. 2005;5:1681–8.

    PubMed  Google Scholar 

  13. Guarrera JV, Henry SD, Samstein B, Odeh-Ramadan R, Kinkhabwala M, Goldstein MJ, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–81.

    CAS  PubMed  Google Scholar 

  14. Guarrera JV, Henry SD, Samstein B, Reznik E, Musat C, Lukose TI, et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant. 2015;15:161–9.

    CAS  PubMed  Google Scholar 

  15. Dutkowski P, Schlegel A, de Oliveira M, Müllhaupt B, Neff F, Clavien PA. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol. 2014;60:765–72.

    PubMed  Google Scholar 

  16. Desai CS, Gerber DA. Concise review of machine perfusion in liver transplantation. World J Hepatol. 2020;12:6–9.

    PubMed  PubMed Central  Google Scholar 

  17. Dutkowski P, Polak WG, Muiesan P, Schlegel A, Verhoeven CJ, Scalera I, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015;262:764–70.

    PubMed  Google Scholar 

  18. Schlegel A, Muller X, Kalisvaart M, Muellhaupt B, Perera MTPR, Isaac JR, et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J Hepatol. 2019;70:50–7.

    CAS  PubMed  Google Scholar 

  19. Kron P, Schlegel A, Mancina L, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J Hepatol. 2017;S0168–8278(17):32268–77.

    Google Scholar 

  20. de Vries Y, Matton APM, Nijsten MWN, Werner MJM, de Meijer VE, Porte RJ, et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am J Transplant. 2019;19:1202–11.

    PubMed  PubMed Central  Google Scholar 

  21. Ravikumar R, Jassem W, Mergental H, Heaton N, Mirza D, Perera MT, et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (First-in-Man) clinical trial. Am J Transplant. 2016;16:1779–87.

    CAS  PubMed  Google Scholar 

  22. Selzner M, Goldaracena N, Echeverri J, Kaths JM, Linares I, Selzner N, et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: first North American results. Liver Transpl. 2016;22:1501–8.

    PubMed  Google Scholar 

  23. Bral M, Gala-Lopez B, Bigam D, Kneteman N, Malcolm A, Livingstone S, et al. Preliminary single-center canadian experience of human normothermic ex vivo liver perfusion: results of a clinical trial. Am J Transplant. 2017;17:1071–80.

    CAS  PubMed  Google Scholar 

  24. Van Rijn R, van Leeuwen OB, Matton APM, Burlage LC, Wiersema-Buist J, Porte RJ, et al. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transpl. 2018;24:655–64.

    PubMed  PubMed Central  Google Scholar 

  25. Ghinolfi D, Rreka E, De Tata V, Franzini M, Pezzati D, Fierabracci V, et al. Pilot, open, randomized, prospective trial for normothermic machine perfusion evaluation in liver transplantation from older donors. Liver Transpl. 2019;25:436–49.

    PubMed  Google Scholar 

  26. Bral M, Dajani K, Izquierdo DL, Bigam D, Friend PJ, Shapiro AMJ, et al. A back-to-base experience of human normothermic ex situ liver perfusion: does the chill kill? Liver Transpl. 2019;25:848–58.

    PubMed  Google Scholar 

  27. Uematsu T, Asano T, Enomoto K, Goto T, Suzuki T, Nakajima K, et al. Predictable viability assay of isolated canine liver using hypothermic continuous machine perfusion. Transplant Proc. 1987;19:1321–3.

    CAS  PubMed  Google Scholar 

  28. Asano T, Enomoto K, Ohtsuka M, Goto T, Nakagohri T, Kenmochi T, et al. Usefulness of rapid machine cooling in the procurement of livers. Transplant Proc. 1989;21:1307–8.

    CAS  PubMed  Google Scholar 

  29. Sakamoto K, Nakajima K, Kenmochi T, Hamaguchi K, Maeda H, Asano T, et al. Utilization of organ preservation machine as an ex vivo swine liver perfusion system with human whole blood at 37 degrees C. Transplant Proc. 1996;28:1919–21.

    CAS  PubMed  Google Scholar 

  30. Uchiyama M, Matsuno N, Nakamura Y, Iwamoto H, Hama K, Narumi K, et al. Usefulness of preservation by machine perfusion of liver grafts from non-heart-beating donors-a porcine model. Transplant Proc. 2003;35:105–6.

    CAS  PubMed  Google Scholar 

  31. Hagiwara M, Matsuno N, Meng LT, Furukori M, Watanabe K, Shonaka T, et al. Applicability of combined use of extracorporeal support and temperature-controlled machineperfusion preservation for liver procurement of donors after cardiac death in pigs. Transplant Proc. 2016;48:1234–8.

    CAS  PubMed  Google Scholar 

  32. Okamura Y, Hata K, Tanaka H, Hirao H, Kubota T, Inamoto O, et al. Impact of subnormothermic machine perfusion preservation in severely steatotic rat livers: a detailed assessment in an isolated setting. Am J Transplant. 2017;17:1204–15.

    CAS  PubMed  Google Scholar 

  33. Yoshikawa R, Obara H, Matsuno N, Morito N, Gouchi M, Otani M, et al. Ex vivo reperfusion model to evaluate utility of machine preservation for porcine liver donated after cardiac death. Transplant Proc. 2018;50:2826–9.

    CAS  PubMed  Google Scholar 

  34. Yoshikawa R, Matsuno N, Morito N, Gouchi M, Otani M, Takahashi H, et al. Evaluation using an isolated reperfusion model for porcine liver donated after cardiac death preserved with oxygenated hypothermic machine perfusion. Ann Transplant. 2018;23:822–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshimoto S, Torai S, Yoshioka M, Nadahara S, Kobayashi E. Continuous resuscitation for porcine liver transplantation from donor after cardiac death. Transplant Proc. 2019;51:1463–7.

    PubMed  Google Scholar 

  36. Shonaka T, Matsuno N, Obara H, Yoshikawa R, Nishikawa Y, Ishihara Y, et al. Impact of human-derived hemoglobin based oxygen vesicles as a machine perfusion solution for liver donation after cardiac death in a pig model. PLoS ONE. 2019;14:e0226183.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Obara H, Morito N, Matsuno N, Yoshikawa R, Nakajo T, Gochi M, et al. Initial perfusate purification during subnormothermic machine perfusion for porcine liver donated after cardiac death. J Artif Organs. 2020;23:62–9.

    PubMed  Google Scholar 

  38. Kanazawa H, Obara H, Yoshikawa R, Meng L, Hirano T, Okada Y, et al. Impact of machine perfusion on sinusoid microcirculation of liver graft donated after cardiac death. J Surg Res. 2020;245:410–9.

    CAS  PubMed  Google Scholar 

  39. Ishii D, Matsuno N, Gochi M, Otani M, Shonaka T, Takahashi H, Miyamoto K, Furukawa H, et al. Transplantation in a porcine model: an experimental study. Ann Transplant. 2020;25:919920.

    Google Scholar 

  40. Ceresa CDL, Nasralla D, Coussios CC, Friend PJ. The case for normothermic machine perfusion in liver transplantation. Liver Transpl. 2018;24:269–75.

    PubMed  Google Scholar 

  41. Minor T, Efferz P, Fox M, Wohlschlaeger J, Lüer B. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 2013;13:1450–60.

    CAS  PubMed  Google Scholar 

  42. Dutkowski P, Odermatt B, Heinrich T, Schönfeld S, Watzka M, Winkelbach V, et al. Hypothermic oscillating liver perfusion stimulates ATP synthesis prior to transplantation. J Surg Res. 1998;80:365–72.

    CAS  PubMed  Google Scholar 

  43. Lüer B, Koetting M, Efferz P, Minor T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transpl Int. 2010;23:944–50.

    PubMed  Google Scholar 

  44. Dutkowski P, Guarrera JV, de Jonge J, Martins PN, Porte RJ, Clavien PA. Evolving trends in machine perfusion for liver transplantation. Gastroenterology. 2019;156:1542–7.

    PubMed  Google Scholar 

  45. Westerkamp AC, Mahboub P, Meyer SL, Hottenrott M, Ottens PJ, Porte RJ, et al. End-ischemic machine perfusion reduces bile duct injury in donation after circulatory death rat donor livers independent of the machine perfusion temperature. Liver Transpl. 2015;21:1300–11.

    PubMed  Google Scholar 

  46. Op den Dries S, Westerkamp AC, Karimian N, Bruinsma BG, Markmann JF, Porte RJ, et al. Injury to peribiliary glands and vascular plexus before liver transplantation predicts formation of non-anastomotic biliary strictures. J Hepatol. 2014;60:1172–9.

    PubMed  Google Scholar 

  47. Dufour S, Rousse N, Canioni P, Diolez P, Biochem J. Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J. 1996;314:743–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Q, Hassan A, Pezzati D, Soliman B, Lomaglio L, Grady P, et al. Ex situ liver machine perfusion: the impact of fresh frozen plasma. Liver Transpl. 2020;26:215–26.

    PubMed  Google Scholar 

  49. Chew HC, Iyer A, Connellan M, Scheuer S, Villanueva J, Gao L, et al. Outcomes of donation after circulatory death heart transplantation in Australia. J Am Coll Cardiol. 2019;73:1447–59.

    PubMed  Google Scholar 

  50. Brockmann J, Reddy S, Coussios C, Pigott D, Guirriero D, Hughes D, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg. 2009;250:1–6.

    PubMed  Google Scholar 

  51. Schön MR, Kollmar O, Wolf S, Schrem H, Matthes M, Akkoc N, et al. Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann Surg. 2001;233:114–23.

    PubMed  PubMed Central  Google Scholar 

  52. Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int. 2015;28:657–64.

    PubMed  Google Scholar 

  53. Lanir A, Jenkins RL, Caldwell C, Lee RG, Khettry U, Clouse ME. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology. 1988;8:471–5.

    CAS  PubMed  Google Scholar 

  54. Rosser BG, Gores GJ. Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology. 1995;108:252–75.

    CAS  PubMed  Google Scholar 

  55. Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, Saeidi N, et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant. 2014;14:1400–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruinsma BG, Sridharan GV, Weeder PD, Avruch JH, Saeidi N, Özer S, et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci Rep. 2016;6:22415.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: a systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33(Suppl 1):S57-70.

    PubMed  Google Scholar 

  58. Tashiro H, Kuroda S, Mikuriya Y, Ohdan H. Ischemia–reperfusion injury in patients with fatty liver and the clinical impact of steatotic liver on hepatic surgery. Surg Today. 2014;44:1611–25.

    CAS  PubMed  Google Scholar 

  59. Guarrera JV, Henry SD, Chen SW, Brown T, Nachber E, Arrington B, et al. Hypothermic machine preservation attenuates ischemia/reperfusion markers after liver transplantation: preliminary results. J Surg Res. 2011;167:e365–73.

    PubMed  Google Scholar 

  60. Selten JW, Verhoeven CJ, Heedfeld V, Roest HP, de Jonge J, Pirenne J, et al. The release of microRNA-122 during liver preservation is associated with early allograft dysfunction and graft survival after transplantation. Liver Transpl. 2017;23:946–56.

    PubMed  Google Scholar 

  61. Andersson P, Gidlöf O, Braun OO, Götberg M, van der Pals J, Olde B, et al. Plasma levels of liver-specific miR-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia. Shock. 2012;37:234–8.

    CAS  PubMed  Google Scholar 

  62. Karangwa SA, Burlage LC, Adelmeijer J, Karimian N, Westerkamp AC, Matton AP, et al. Activation of fibrinolysis, but not coagulation, during end-ischemic ex situ normothermic machine perfusion of human donor livers. Transplantation. 2017;101:e42–8.

    PubMed  Google Scholar 

  63. Linares-Cervantes I, Echeverri J, Cleland S, Kaths JM, Rosales R, Goto T, et al. Predictor parameters of liver viability during porcine normothermic ex situ liver perfusion in a model of liver transplantation with marginal grafts. Am J Transplant. 2019;19:2991–3005.

    CAS  PubMed  Google Scholar 

  64. Watson CJE, Kosmoliaptsis V, Pley C, Randle L, Fear C, Crick K, et al. Observations on the ex situ perfusion of livers for transplantation. Am J Transplant. 2018;18:2005–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Matton APM, de Vries Y, Burlage LC, van Rijn R, Fujiyoshi M, de Meijer VE, et al. Biliary bicarbonate, pH, and glucose are suitable biomarkers of biliary viability during ex situ normothermic machine perfusion of human donor livers. Transplantation. 2019;103:1405–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. op den Dries S, Karimian N, Westerkamp AC, Sutton ME, Kuipers M, Wiersema-Buist J, et al. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers. Liver Transpl. 2016;22:994–1005.

    PubMed  Google Scholar 

  67. Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med. 2017;21:1719–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson CJE, Kosmoliaptsis V, Randle LV, Gimson AE, Brais R, Klinck JR, et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia-important lessons from the first 12 Cases. Transplantation. 2017;101:1084–98.

    PubMed  PubMed Central  Google Scholar 

  69. Laing RW, Mergental H, Yap C, Kirkham A, Whilku M, Afford SC, Mirza DF, et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open. 2017;7:e017733.

    PubMed  PubMed Central  Google Scholar 

  70. de Vries Y, Brendsen TA, Fujiyoshi M, van den Berg AP, de Meijer VE, Porte R, et al. Transplantation of high-risk donor livers after resuscitation and viability assessment using a combined protocol of oxygenated hypothermic, rewarming and normothermic machine perfusion: study protocol for a prospective, single-arm study (DHOPE-COR-NMP trial). BMJ Open. 2019;9:e028596.

    PubMed  PubMed Central  Google Scholar 

  71. Watson CJE, Jochmans I. From “Gut Feeling” to Objectivity: Machine Preservation of the Liver as a Tool to Assess Organ Viabil

Download references

Acknowledgements

We thank Angela Morben, DVM, ELS, from Edanz Group (https://en-author-services.edanzgroup.com/), for editing a draft of this manuscript.

Funding

No grant or financial support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Harada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, N., Yoshizumi, T. & Mori, M. Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 52, 359–368 (2022). https://doi.org/10.1007/s00595-021-02265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02265-x

Keywords

Navigation