Skip to main content
Log in

Liquid biopsy as a perioperative biomarker of digestive tract cancers: review of the literature

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Tissue biopsies are the gold-standard for investigating the molecular characterization of tumors. However, a “solid” biopsy is an invasive procedure that cannot capture real-time tumor dynamics and may yield inaccurate information because of intratumoral heterogeneity. In this review, we summarize the current state of knowledge about surgical treatment-associated “liquid” biopsy for patients with digestive organ tumors. A liquid biopsy is a technique involving the sampling and testing of non-solid biological materials, including blood, urine, saliva, and ascites. Previous studies have reported the potential value of blood-based biomarkers, circulating tumor cells, and cell-free nucleic acids as facilitators of cancer treatment. The applications of a liquid biopsy in a cancer treatment setting include screening and early diagnosis, prognostication, and outcome and recurrence monitoring of cancer. This technique has also been suggested as a useful tool in personalized medicine. The transition to precision medicine is still in its early stages. Soon, however, liquid biopsy is likely to form the basis of patient selection for molecular targeted therapies, predictions regarding chemotherapy sensitivity, and real-time evaluations of therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Japanese gastric cancer treatment guidelines 2018 (5th edition). Japanese Gastric Cancer Association. Gastric Cancer. 2020.

  2. Benson AB, Venook AP, Cederquist L, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15:370–98.

  3. Kojima M, Puppa G, Kirsch R, Basturk O, Frankel WL, Vieth M, et al. Pathological diagnostic criterion of blood and lymphatic vessel invasion in colorectal cancer: a framework for developing an objective pathological diagnostic system using the Delphi method, from the Pathology Working Group of the Japanese Society for Cancer of the Colon and Rectum. J Clin Pathol. 2013;66:5518.

    Google Scholar 

  4. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    CAS  PubMed  Google Scholar 

  5. Williams JB, Li S, Higgs EF, Cabanov A, Wang X, Huang H, et al. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat Commun. 2020;11:602. https://doi.org/10.1038/s41467-020-14290-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alix-Panabières C. The future of liquid biopsy. Nature. 2020;579:S9.

    PubMed  Google Scholar 

  7. Martinelli E, Ciardiello D, Martini G, Troiani T, Cardone C, Vitiello PP, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol. 2020;31:30–40.

    CAS  PubMed  Google Scholar 

  8. Tayoun T, Faugeroux V, Oulhen M, Aberlenc A, Pawlikowska P, Farace F. CTC-derived models: a window into the seeding capacity of circulating tumor cells (CTCs). Cells. 2019;8:E1145.

    PubMed  Google Scholar 

  9. Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer. 2018;1869:117–27.

    CAS  PubMed  Google Scholar 

  10. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570:385–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lam WKJ, Jiang P, Chan KCA, Cheng SH, Zhang H, Peng W, et al. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. Proc Natl Acad Sci U S A. 2018;115:E5115–E51245124.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shoda K, Ichikawa D, Fujita Y, Masuda K, Hiramoto H, Hamada J, et al. Monitoring the HER2 copy number status in circulating tumor DNA by droplet digital PCR in patients with gastric cancer. Gastric Cancer. 2017;20:126–35.

    CAS  PubMed  Google Scholar 

  13. Shibayama T, Low SK, Ono M, Kobayashi T, Kobayashi K, Fukada I, et al. Clinical significance of gene mutation in ctDNA analysis for hormone receptor-positive metastatic breast cancer. Breast Cancer Res Treat. 2020;180:331–41.

    CAS  PubMed  Google Scholar 

  14. Song J, Hegge JW, Mauk MG, Chen J, Till JE, Bhagwat N, et al. Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Res. 2020;48:e19. https://doi.org/10.1093/nar/gkz1165.

    Article  CAS  PubMed  Google Scholar 

  15. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12.pii: eaax7533. https://doi.org/10.1126/scitranslmed.aax7533.

  16. Fu X, Shen C, Wang H, Chen F, Li G, Wen Z. Joint quantitative measurement of hTERT mRNA in both peripheral blood and circulating tumor cells of patients with nasopharyngeal carcinoma and its clinical significance. BMC Cancer. 2017;17:479. https://doi.org/10.1186/s12885-017-3471-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichikawa D, Komatsu S, Konishi H, Otsuji E. Circulating microRNA in digestive tract cancers. Gastroenterology. 2012;142:1074–8.

    PubMed  Google Scholar 

  18. Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33:3185–93.

    CAS  PubMed  Google Scholar 

  19. Tang W, Fu K, Sun H, Rong D, Wang H, Cao H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer. 2018;17:137. https://doi.org/10.1186/s12943-018-0888-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    PubMed  PubMed Central  Google Scholar 

  21. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087.

    PubMed  Google Scholar 

  22. Kosaka N, Kogure A, Yamamoto T, Urabe F, Usuba W, Prieto-Vila M, et al. Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Exp Mol Med. 2019;51:1–9.

    CAS  PubMed  Google Scholar 

  23. Tsujiura M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Otsuji E. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol. 2014;20:3265–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci. 2019;110:1140–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Osumi H, Shinozaki E, Yamaguchi K, Zembutsu H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci. 2019;110:1148–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeda H, Nagata N, Nagasaka T, Oba K, Mishima H, Kato T, et al. A multicenter single-arm Phase II clinical trial of second-line FOLFIRI plus panitumumab after first-line treatment with FOLFOX plus panitumumab for initial RAS wild-type colorectal cancer with evaluation of circulating tumor DNA: a protocol study. Oncol Lett. 2019;17:1980–5.

    CAS  PubMed  Google Scholar 

  27. Nakamura Y, Yoshino T. Clinical utility of analyzing circulating tumor DNA in patients with metastatic colorectal cancer. Oncologist. 2018;23:1310–8.

    PubMed  PubMed Central  Google Scholar 

  28. Komatsu S, Ichikawa D, Takeshita H, Morimura R, Hirajima S, Tsujiura M, et al. Circulating miR-18a: a sensitive cancer screening biomarker in human cancer. Vivo. 2014;28:293–7.

    CAS  Google Scholar 

  29. Udagawa C, Nakamura H, Ohnishi H, Tamura K, Shimoi T, Yoshida M, et al. Whole exome sequencing to identify genetic markers for trastuzumab-induced cardiotoxicity. Cancer Sci. 2018;109:446–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia J, Zhang P, Gou M, Yang F, Qian N, Dai G. The role of serum CEA and CA19-9 in efficacy evaluations and progression-free survival predictions for patients treated with cetuximab combined with FOLFOX4 or FOLFIRI as a first-line treatment for advanced colorectal cancer. Dis Markers. 2019;2019:6812045.

    PubMed  PubMed Central  Google Scholar 

  31. Takeuchi H, Kitagawa Y. Circulating tumor cells in gastrointestinal cancer. J Hepatobiliary Pancreat Sci. 2010;17:577–82.

    PubMed  Google Scholar 

  32. Nordgård O, Tjensvoll K, Gilje B, Søreide K. Circulating tumour cells and DNA as liquid biopsies in gastrointestinal cancer. Br J Surg. 2018;105:e110–e12020.

    PubMed  Google Scholar 

  33. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;623–31.

  35. Komeda T, Fukuda Y, Sando T, Kita R, Furukawa M, Nishida N. Sensitive detection of circulating hepatocellular carcinoma cells in peripheral venous blood. Cancer. 1995;75:2214–9.

    CAS  PubMed  Google Scholar 

  36. Becker TM, Caixeiro NJ, Lim SH, Tognela A, Kienzle N, Scott KF, et al. New frontiers in circulating tumor cell analysis: a reference guide for biomolecular profiling toward translational clinical use. Int J Cancer. 2014;134:2523–33.

    CAS  PubMed  Google Scholar 

  37. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res. 2007;13:920–8.

    CAS  PubMed  Google Scholar 

  38. Le Du F, Fujii T, Kida K, Davis DW, Park M, Liu DD, et al. EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy. PLoS ONE. 2020;15:e0229903.

    PubMed  PubMed Central  Google Scholar 

  39. Masuda T, Hayashi N, Iguchi T, Ito S, Eguchi H, Mimori K. Clinical and biological significance of circulating tumor cells in cancer. Mol Oncol. 2016;10:408–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 2013;73:2059–69.

    CAS  PubMed  Google Scholar 

  41. Zheng Y, Cui L, Sun W, Zhou H, Yuan X, Huo M, et al. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark. 2011;10:71–7.

    CAS  PubMed  Google Scholar 

  42. Cheng SW, Tsai HW, Lin YJ, Cheng PN, Chang YC, Yen CJ, et al. Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma. PLoS ONE. 2013;8:e80053.

    PubMed  PubMed Central  Google Scholar 

  43. Iinuma H, Watanabe T, Mimori K, Adachi M, Hayashi N, Tamura J, et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes' stage B and C colorectal cancer. J Clin Oncol. 2011;29:1547–55.

    PubMed  Google Scholar 

  44. Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the gene expression database of circulating tumor cells and microemboli. Database (Oxford). 2020. https://doi.org/10.1093/database/baaa020.

    Article  PubMed Central  Google Scholar 

  45. Alvarez Cubero MJ, Lorente JA, Robles-Fernandez I, Rodriguez-Martinez A, Puche JL, Serrano MJ. Circulating tumor cells: markers and methodologies for enrichment and detection. Methods Mol Biol. 2017;1634:283–303.

    CAS  PubMed  Google Scholar 

  46. Lu SH, Tsai WS, Chang YH, Chou TY, Pang ST, Lin PH, et al. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther. 2016;17:430–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu M, Wang R, Sun X, Liu Y, Wang Z, Yan J, et al. Prognostic significance of PD-L1 expression on cell-surface vimentin-positive circulating tumor cells in gastric cancer patients. Mol Oncol. 2020;14:865–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ikeda M, Koh Y, Teraoka S, Sato K, Kanai K, Hayata A, et al. Detection of AXL expression in circulating tumor cells of lung cancer patients using an automated microcavity array system. Cancer Med. 2020;9:2122–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, et al. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr). 2020;43:31–49.

    Google Scholar 

  50. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep. 2013;3:1259. https://doi.org/10.1038/srep01259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li S, Yan W, Yang X, Chen L, Fan L, Liu H, et al. Less micrometastatic risk related to circulating tumor cells after endoscopic breast cancer surgery compared to open surgery. BMC Cancer. 2019;19:1070.

    PubMed  PubMed Central  Google Scholar 

  52. Zhong X, Zhang H, Zhu Y, Liang Y, Yuan Z, Li J, et al. Circulating tumor cells in cancer patients: developments and clinical applications for immunotherapy. Mol Cancer. 2020;19:15.

    PubMed  PubMed Central  Google Scholar 

  53. Sastre J, Orden V, Martínez A, Bando I, Balbín M, Bellosillo B, et al. Association between baseline circulating tumor cells, molecular tumor profiling, and clinical characteristics in a large cohort of chemo-naïve metastatic colorectal cancer patients prospectively collected. Clin Colorectal Cancer. 2020. https://doi.org/10.1016/j.clcc.2020.02.014.

  54. Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin Exp Immunol. 1984;56:185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lo YMD, Zhang J, Leung TN, Lau TK, Chang AMZ, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu SCY, Lee SWY, Jiang P, Leung TY, Chan KCA, Chiu RWK, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem. 2013;59:1228 LP-1237.

  57. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;31:985–90.

    Google Scholar 

  58. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Husain H, Velculescu VE. Cancer DNA in the circulation: the liquid biopsy. JAMA. 2017;318:1272–4.

    PubMed  PubMed Central  Google Scholar 

  60. Li L, Zhang J, Jiang X, Li Q. Promising clinical application of ctDNA in evaluating immunotherapy efficacy. Am J Cancer Res. 2018;8:1947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: ready for prime time? Cancer Lett. 2020;468:59–71.

    CAS  PubMed  Google Scholar 

  62. Hedner C, Tran L, Borg D, Nodin B, Jirström K, Eberhard J. Discordant human epidermal growth factor receptor 2 overexpression in primary and metastatic upper gastrointestinal adenocarcinoma signifies poor prognosis. Histopathology. 2016;68:230–40.

    PubMed  Google Scholar 

  63. Sugimachi K, Sakimura S, Kuramitsu S, Hirata H, Niida A, Iguchi T. Serial mutational tracking in surgically resected locally advanced colorectal cancer with neoadjuvant chemotherapy. Br J Cancer. 2018;119:419–23.

    PubMed  PubMed Central  Google Scholar 

  64. Rossi G, Ignatiadis M. Promises and pitfalls of using liquid biopsy for precision medicine. Cancer Res. 2019;79:2798–804.

    CAS  PubMed  Google Scholar 

  65. Hamakawa T, Kukita Y, Kurokawa Y, Miyazaki Y, Takahashi T, Yamasaki M, et al. Monitoring gastric cancer progression with circulating tumour DNA. Br J Cancer. 2015;112:352–6.

    CAS  PubMed  Google Scholar 

  66. Wang TT, Abelson S, Zou J, Li T, Zhao Z, Dick JE, et al. High efficiency error suppression for accurate detection of low-frequency variants. Nucleic Acids Res. 2019;47:e87.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Makiyama A, Sukawa Y, Kashiwada T, Kawada J, Hosokawa A, Horie Y, et al. Randomized, phase II study of trastuzumab beyond progression in patients with HER2-positive advanced gastric or gastroesophageal junction cancer: WJOG7112G (T-ACT Study). J Clin Oncol. 2020; JCO1903077. https://doi.org/10.1200/JCO.19.03077.

  68. Shoda K, Ichikawa D, Fujita Y, Masuda K, Hiramoto H, Hamada J, et al. Clinical utility of circulating cell-free Epstein-Barr virus DNA in patients with gastric cancer. Oncotarget. 2017;8:28796–804.

    PubMed  PubMed Central  Google Scholar 

  69. Hou H, Yang X, Zhang J, Zhang Z, Xu X, Zhang X, et al. Discovery of targetable genetic alterations in advanced non-small cell lung cancer using a next-generation sequencing-based circulating tumor DNA assay. Sci Rep. 2017;7:14605.

    PubMed  PubMed Central  Google Scholar 

  70. Ogino S, Konishi H, Ichikawa D, Hamada J, Shoda K, Arita T, et al. Detection of fusion gene in cell-free DNA of a gastric synovial sarcoma. World J Gastroenterol. 2018;24:949–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–83.

    CAS  PubMed  Google Scholar 

  72. Brikun I, Nusskern D, Decatus A, Harvey E, Li L, Freije D. A panel of DNA methylation markers for the detection of prostate cancer from FV and DRE urine DNA. Clin Epigenet. 2018;10:91.

    Google Scholar 

  73. Dasi F, Lledo S, Garcia-Granero E, Ripoll R, Marugan M, Tormo M. Real-time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. Lab Invest. 2001;81:767–9.

    CAS  PubMed  Google Scholar 

  74. Tani N, Ichikawa D, Ikoma D, Tomita H, Sai S, Ikoma H, et al. Circulating cell-free mRNA in plasma as a tumor marker for patients with primary and recurrent gastric cancer. Anticancer Res. 2007;27:1207–12.

    CAS  PubMed  Google Scholar 

  75. Kawaguchi T, Komatsu S, Ichikawa D, Tsujiura M, Takeshita H, Hirajima S, et al. Circulating microRNAs: a next-generation clinical biomarker for digestive system cancers. Int J Mol Sci. 2016; 17. pii: E1459. https://doi.org/10.3390/ijms17091459.

  76. Konno M, Koseki J, Asai A, Yamagata A, Shimamura T, Motooka D, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun. 2019;10:3888.

    PubMed  PubMed Central  Google Scholar 

  77. Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, et al. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn. 2019;19:477–98.

    PubMed  Google Scholar 

  78. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer. 2019;18:136.

    PubMed  PubMed Central  Google Scholar 

  80. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370–83.

    CAS  PubMed  Google Scholar 

  81. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836.

    PubMed  PubMed Central  Google Scholar 

  82. Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer. 2019;18:62.

    PubMed  PubMed Central  Google Scholar 

  83. Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol. 2017;232:3251–60.

    CAS  PubMed  Google Scholar 

  84. Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun. 2014;5:3591.

    PubMed  PubMed Central  Google Scholar 

  85. Wang W, Luo J, Wang S. Recent progress in isolation and detection of extracellular vesicles for cancer diagnostics. Adv Healthc Mater. 2018;7:e1800484.

    PubMed  Google Scholar 

  86. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J Immunol. 2017;198:1649–59.

    CAS  PubMed  Google Scholar 

  88. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017;114:10202–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Berger AW, Schwerdel D, Costa IG, Hackert T, Strobel O, Lam S, et al. Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2016;151:267–70.

    CAS  PubMed  Google Scholar 

  90. Rubin DT, Dachman AH. Virtual colonoscopy: a novel imaging modality for colorectal cancer. Curr Oncol Rep. 2001;3:88–93.

    CAS  PubMed  Google Scholar 

  91. Kothari ST, Huang RJ, Shaukat A, Agrawal D, Buxbaum JL, Abbas Fehmi SM, et al. ASGE review of adverse events in colonoscopy. Gastrointest Endosc. 2019;90:863–76.

    PubMed  Google Scholar 

  92. Robertson DJ, Lee JK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, et al. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Am J Gastroenterol. 2017;112:37–533.

    PubMed  Google Scholar 

  93. Lin JS, Piper MA, Perdue LA, Rutter CM, Webber EM, O'Connor E, et al. Screening for colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2016;315:2576–94.

    CAS  PubMed  Google Scholar 

  94. Tóth K, Sipos F, Kalmár A, Patai AV, Wichmann B, Stoehr R, et al. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS ONE. 2012;7:e46000.

    PubMed  PubMed Central  Google Scholar 

  95. Lamb YN, Dhillon S. Epi proColon 2.0 CE: a blood-based screening test for colorectal cancer. Mol Diagn Ther. 2017; 21:225–232.

  96. Schøler LV, Reinert T, Ørntoft MW, Kassentoft CG, Árnadóttir SS, Vang S, et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin Cancer Res. 2017;23:5437–45.

    PubMed  Google Scholar 

  97. Norcic G, Jelenc F, Cerkovnik P, Stegel V, Novakovic S. Role of specific DNA mutations in the peripheral blood of colorectal cancer patients for the assessment of tumor stage and residual disease following tumor resection. Oncol Lett. 2016;12:3356–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Trans Med. 2016; 8:346ra92.

  99. Chadi SA, Malcomson L, Ensor J, Riley RD, Vaccaro CA, Rossi GL, et al. Factors affecting local regrowth after watch and wait for patients with a clinical complete response following chemoradiotherapy in rectal cancer (InterCoRe consortium): an individual participant data meta-analysis. Lancet Gastroenterol Hepatol. 2018;3:825–36.

    PubMed  Google Scholar 

  100. Lv J, Chen Y, Zhou G, Qi Z, Tan KRL, Wang H, et al. Liquid biopsy tracking during sequential chemo-radiotherapy identifies distinct prognostic phenotypes in nasopharyngeal carcinoma. Nat Commun. 2019;10:3941.

    PubMed  PubMed Central  Google Scholar 

  101. Khakoo S, Carter PD, Brown G, Valeri N, Picchia S, Bali MA, et al. MRI tumor regression grade and circulating tumor DNA as complementary tools to assess response and guide therapy adaptation in rectal cancer. Clin Cancer Res. 2020;26:183–92.

    CAS  PubMed  Google Scholar 

  102. Li Y, Gong J, Zhang Q, Lu Z, Gao J, Li Y, et al. Dynamic monitoring of circulating tumour cells to evaluate therapeutic efficacy in advanced gastric cancer. Br J Cancer. 2016;114:138–21414.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen Y, Yang Z, Wang Y, Wang J, Wang C. Karyotyping of circulating tumor cells for predicting chemotherapeutic sensitivity and efficacy in patients with esophageal cancer. BMC Cancer. 2019;19:651.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, et al. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology. 2020;158:494–505.

    CAS  PubMed  Google Scholar 

  105. Yang J, Gong Y, Lam VK, Shi Y, Guan Y, Zhang Y, et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020;11:346.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu CY, Uen YH, Tsai HL, Chuang SC, Hou MF, Wu DC, et al. Molecular detection of persistent postoperative circulating tumour cells in stages II and III colon cancer patients via multiple blood sampling: prognostic significance of detection for early relapse. Br J Cancer. 2011;104:1178–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Court CM, Ankeny JS, Sho S, Winograd P, Hou S, Song M, et al. Circulating tumor cells predict occult metastatic disease and prognosis in pancreatic cancer. Ann Surg Oncol. 2018;25:1000–8.

    PubMed  PubMed Central  Google Scholar 

  108. Lee B, Lipton L, Cohen J, Tie J, Javed AA, Li L, et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann Oncol. 2019;30:1472–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shoda K, Masuda K, Ichikawa D, Arita T, Miyakami Y, Watanabe M, et al. HER2 amplification detected in the circulating DNA of patients with gastric cancer: a retrospective pilot study. Gastric Cancer. 2015;18:698–710.

    CAS  PubMed  Google Scholar 

  110. Wang Y, Li L, Cohen JD, Kinde I, Ptak J, Popoli M, et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.0512.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ueda M, Iguchi T, Masuda T, Nakahara Y, Hirata H, Uchi R, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016;7:62280–91.

    PubMed  PubMed Central  Google Scholar 

  112. Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N, et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015;5:18425.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rothwell DG, Ayub M, Cook N, Thistlethwaite F, Carter L, Dean E, et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat Med. 2019;25:738–43.

    CAS  PubMed  Google Scholar 

  114. Parikh AR, Leshchiner I, Elagina L, Goyal L, Levovitz C, Siravegna G, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25:1415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pernot S, Badoual C, Terme M, Castan F, Cazes A, Bouche O, et al. Dynamic evaluation of circulating tumour cells in patients with advanced gastric and oesogastric junction adenocarcinoma: prognostic value and early assessment of therapeutic effects. Eur J Cancer. 2017;79:15–22.

    PubMed  Google Scholar 

  116. Wu W, Zhang Z, Gao XH, Shen Z, Jing Y, Lu H, et al. Clinical significance of detecting circulating tumor cells in colorectal cancer using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH). Oncotarget. 2017;8:21639–49.

    PubMed  PubMed Central  Google Scholar 

  117. Gemenetzis G, Groot VP, Yu J, Ding D, Teinor JA, Javed AA, et al. Circulating tumor cells dynamics in pancreatic adenocarcinoma correlate with disease status: results of the prospective CLUSTER study. Ann Surg. 2018;268:408–20.

    PubMed  Google Scholar 

  118. Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5:1124–31.

    PubMed  PubMed Central  Google Scholar 

  119. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.

    PubMed  PubMed Central  Google Scholar 

  120. Davis JW. Circulating tumor cell assays for the prognosis of prostate and colon cancers. Expert Opin Med Diagn. 2009;3:293–301.

    CAS  PubMed  Google Scholar 

  121. Truini A, Alama A, Dal Bello MG, Coco S, Vanni I, Rijavec E, et al. Clinical applications of circulating tumor cells in lung cancer patients by cell search system. Front Oncol. 2014;4:242.

    PubMed  PubMed Central  Google Scholar 

  122. Westwood M, Joore M, Whiting P, van Asselt T, Ramaekers B, Armstrong N, et al. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2014;18:1–166.

    PubMed  PubMed Central  Google Scholar 

  123. Pickhardt PJ. Emerging stool-based and blood-based non-invasive DNA tests for colorectal cancer screening: the importance of cancer prevention in addition to cancer detection. Abdom Radiol (NY). 2016;41:1441–4.

    Google Scholar 

  124. Lin KW. mSEPT9 (Epi proColon) blood test for colorectal cancer screening. Am Fam Phys. 2019;100:10–1.

    Google Scholar 

  125. Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, et al. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer. 2013;13:398.

    PubMed  PubMed Central  Google Scholar 

  126. Mu J, Huang Y, Cai S, Li Q, Song Y, Yuan Y, et al. Plausibility of an extensive use of stool DNA test for screening advanced colorectal neoplasia. Clin Chim Acta. 2020;501:42–7.

    CAS  PubMed  Google Scholar 

  127. van Lanschot MC, Carvalho B, Coupé VM, van Engeland M, Dekker E, Meijer GA. Molecular stool testing as an alternative for surveillance colonoscopy: a cross-sectional cohort study. BMC Cancer. 2017;17:116.

    PubMed  PubMed Central  Google Scholar 

  128. Weiser E, Parks PD, Swartz RK, Thomme JV, Lavin PT, Limburg P, et al. Cross-sectional adherence with the multi-target stool DNA test for colorectal cancer screening: real-world data from a large cohort of older adults. J Med Screen. 2020; 969141320903756. https://doi.org/https://doi.org/10.1177/0969141320903756.

  129. Issa IA, Noureddine M. Colorectal cancer screening: an updated review of the available options. World J Gastroenterol. 2017;23:5086–96.

    PubMed  PubMed Central  Google Scholar 

  130. Niedermaier T, Balavarca Y, Brenner H. Stage-specific sensitivity of fecal immunochemical tests for detecting colorectal cancer: systematic review and meta-analysis. Am J Gastroenterol. 2020;115:56–69.

    PubMed  PubMed Central  Google Scholar 

  131. Olson JE, Kirsch EJ, Edwards VDK, Kirt CR, Kneedler B, Laffin JJ, et al. Colorectal cancer outcomes after screening with the multi-target stool DNA assay: protocol for a large-scale, prospective cohort study (the Voyage study). BMJ Open Gastroenterol. 2020;7:e000353. https://doi.org/10.1136/bmjgast-2019-000353.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bando H, Kagawa Y, Kato T, Akagi K, Denda T, Nishina T, et al. A multicentre, prospective study of plasma circulating tumour DNA test for detecting RAS mutation in patients with metastatic colorectal cancer. Br J Cancer. 2019;120:982–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmiegel W, Scott RJ, Dooley S, Lewis W, Meldrum CJ, Pockney P, et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol Oncol. 2017;11:208–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Grasselli J, Elez E, Caratù G, Matito J, Santos C, Macarulla T, et al. Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol. 2017;28:1294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. García-Foncillas J, Alba E, Aranda E, Díaz-Rubio E, López-López R, Tabernero J, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol. 2017;28:2943–9.

    PubMed  PubMed Central  Google Scholar 

  136. Vivancos A, Aranda E, Benavides M, Élez E, Gómez-España MA, Toledano M, et al. Comparison of the clinical sensitivity of the Idylla platform and the OncoBEAM RAS CRC assay for KRAS mutation detection in liquid biopsy samples. Sci Rep. 2019;9:8976.

    PubMed  PubMed Central  Google Scholar 

  137. Anayama T, Higashiyama M, Yamamoto H, Kikuchi S, Ikeda A, Okami J, et al. Post-operative AICS status in completely resected lung cancer patients with pre-operative AICS abnormalities: predictive significance of disease recurrence. Sci Rep. 2018;8:12378.

    PubMed  PubMed Central  Google Scholar 

  138. Mikami H, Kimura O, Yamamoto H, Kikuchi S, Nakamura Y, Ando T, et al. A multicentre clinical validation of AminoIndex Cancer Screening (AICS). Sci Rep. 2019;9:13831. https://doi.org/10.1038/s41598-019-50304-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    CAS  PubMed  Google Scholar 

  140. Nikolaev S, Lemmens L, Koessler T, Blouin JL, Nouspikel T. Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem. 2018;542:34–9.

    CAS  PubMed  Google Scholar 

  141. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15:827–34.

    CAS  PubMed  Google Scholar 

  142. Clayton A, Buschmann D, Byrd JB, Carter DRF, Cheng L, Compton C. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018;7:76.

    Google Scholar 

  143. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.

    CAS  PubMed  Google Scholar 

  144. Yang M, Forbes ME, Bitting RL, O'Neill SS, Chou PC, Topaloglu U, et al. Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol. 2018;29:311–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI (Grant Number 18K16324). All authors contributed to the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Ichikawa.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Ethical statement

All procedures were performed in accordance with the ethical standards of the responsible committees on human experimentation (institutional and national) and with the Declaration of Helsinki of 1964 and later versions. Informed consent or an acceptable substitute was obtained from all patients prior to study inclusion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoda, K., Saito, R., Maruyama, S. et al. Liquid biopsy as a perioperative biomarker of digestive tract cancers: review of the literature. Surg Today 51, 849–861 (2021). https://doi.org/10.1007/s00595-020-02148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-020-02148-7

Keywords

Navigation