Skip to main content
Log in

Diabetic sarcopenia: metabolic and molecular appraisal

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Myopathy is the missing slot from the routine clinical checkup for diabetic complications. Similarly, its pathophysiological, metabolic, and molecular bases are insufficiently explored. In this review, the above issues are highlighted with a focus on skeletal muscle atrophy (also described as diabetic sarcopenia), in contrast to the normal histological, physiological, and molecular features of the muscles. Literature search using published data from different online resources was used. Several diabetic myopathy etiological factors are discussed explicitly including; inflammation and immunological responses, with emphasis on TNFα and IL-6 overproduction, oxidative stress, neuropathy and vasculopathy, aging sarcopenia, antidiabetic drugs, and insulin resistance as a denominator. The pathophysiological hallmark of diabetic muscle atrophy is the decreased muscle proteins synthesis and increased degradation. The muscle protein degradation is conveyed by 4 systems; ubiquitin-proteasome, lysosomal autophagy, caspase-3, and calpain systems, and is mostly mediated via the IL6/STAT, TNF&IL6/NFκB, myostatin/Smad2/3, and FOXO1/3 signaling pathways, while the protein synthesis inhibition is mediated via suppression of the IGF1-PI3K-Akt-mTOR, and SC-Gαi2-pathways. Moreover, the satellite cells and multilineage muscle mesenchymal progenitor cells differentiation plays a major role on the fate of the affected muscle cells by taking an adipogenic, fibrogenic, or connective tissue lineage. As a conclusion, in this article, the pathological features of diabetic sarcopenia are reviewed at gross level, while at a molecular level the normal protein turnover, signal transduction, and pathways involved in muscle atrophy are described. Finally, an integrated network describing the molecular partakers in diabetic sarcopenia is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sözen T, Başaran NÇ, Tınazlı M, Özışık L (2018) Musculoskeletal problems in diabetes mellitus. Eur J Rheumatol 5(4):258–265

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mukund K, Subramaniam S (2020) Skeletal muscle: a review of molecular structure and function, in health and disease. WIREs Syst Biol Med 12:e1462. https://doi.org/10.1002/wsbm.1462

    Article  Google Scholar 

  3. Meng ZX, Gong J, Chen Z, Sun J, Xiao Y, Wang L et al (2017) Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Mol Cell 66(3):332-344.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Felice V, Coletti D, Seelaender M (2020) Editorial: myokines, adipokines, cytokines in muscle pathophysiology. Front Physiol 11:592856

    Article  PubMed  PubMed Central  Google Scholar 

  5. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(2):S157–S163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A et al (2016) Muscle atrophy in patients with type 2 diabetes mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 22:94–109

    PubMed  PubMed Central  Google Scholar 

  7. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  PubMed  Google Scholar 

  8. Lytrivi M, Castell AL, Poitout V, Cnop M (2020) Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J Mol Biol 432(5):1514–1534

    Article  CAS  PubMed  Google Scholar 

  9. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107

    Article  CAS  PubMed  Google Scholar 

  10. Giha HA, Sater MS, Alamin OAO (2022) Diabetes mellitus tendino-myopathy: epidemiology, clinical features, diagnosis and management of an overlooked diabetic complication. Acta Diabetol. https://doi.org/10.1007/s00592-022-01860-9

    Article  PubMed  Google Scholar 

  11. Rinaldi C, Haddad F, Bodell PW, Qin AX, Jiang W, Baldwin KM (2008) Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle. Am J Physiol Regul Integr Comp Physiol 295(1):R208–R218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA et al (2009) A family of microRNAs encoded bymyosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program. Ann N York Acad Sci 1188(1):191–198

    Article  CAS  Google Scholar 

  14. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393(10191):2636–2646

    Article  PubMed  Google Scholar 

  15. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21–21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilkes MC, Mitchell H, Penheiter SG, Doré JJ, Suzuki K, Edens M et al (2005) Transforming growth factor-β activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res 65(22):10431–10440

    Article  CAS  PubMed  Google Scholar 

  17. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D et al (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nature Med 21(7):786–794

    Article  CAS  PubMed  Google Scholar 

  18. Teng S, Huang P (2019) The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 10(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M et al (2014) Identification and characterization of PDGFRalpha + mesenchymal progenitors in human skeletal muscle. Cell Death Dis 5:e1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Britannica muscle proteins Available: https://www.britannica.com/science/protein /The-muscle-proteins. Accessed 24 Nov 2021

  21. Makovický P, Makovický P, Jílek F (2008) Short review of some properties of muscular proteins. Ceskoslov Fysiol 57(1):10–14

    Google Scholar 

  22. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  23. Halper J, Kjaer M (2014) Basic components of connective tissues and extracellular matrix: Elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Progress in heritable soft connective tissue diseases. Springer, Dordrecht, pp 31–47

    Chapter  Google Scholar 

  24. Flaumenhaft R, Rifkin DB (1991) Extracellular matrix regulation of growth factor and protease activity. Curr Opin Cell Biol 3(5):817–823

    Article  CAS  PubMed  Google Scholar 

  25. Miller BF, Olesen JL, Hansen M, Døssing S, Crameri RM, Welling RJ, etl. (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567(3):1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S et al (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApcMin/+ mouse. PLoS ONE 6(9):e24650. https://doi.org/10.1371/journal.pone.0024650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 11:1014–1019

    Article  CAS  Google Scholar 

  28. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  29. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

  30. Nikoulina SE, Ciaraldi TP, Carter L, Mudaliar S, Park KS, Henry RR (2001) Impaired muscle glycogen synthase in type 2 diabetes is associated with diminished phosphatidylinositol 3-kinase activation. J Clin Endocrinol Metab 86(9):4307–4314

    Article  CAS  PubMed  Google Scholar 

  31. Minetti GC, Feige JN, Bombard F, Heier A, Morvan F, Nurnberg B et al (2014) Gαi2 signaling is required for skeletal muscle growth, regeneration, and satellite cell proliferation and differentiation. Mol Cell Biol 34(4):619–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vainshtein A, Sandri M (2020) Signaling pathways that control muscle mass. Int J Mol Sci 21(13):4759. https://doi.org/10.3390/ijms21134759

    Article  CAS  PubMed Central  Google Scholar 

  33. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307(6):E469–E484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R et al (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Phys: Cell Phys 296(6):C1248–C1257

    Article  CAS  Google Scholar 

  35. Bassil MS, Gougeon R (2013) Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care 16:83–88

    Article  CAS  PubMed  Google Scholar 

  36. Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98(3):911–917

    Article  CAS  PubMed  Google Scholar 

  37. Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi I (2017) STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol Med 9(5):622–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hyatt HW, Powers SK (2020) The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int J Sports Med 41(14):994–1008

    Article  PubMed  Google Scholar 

  39. Huang J, Zhu X (2016) The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol Res 65(4):547–560

    Article  CAS  PubMed  Google Scholar 

  40. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113(1):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  42. Abdulwahab RA, Alaiya A, Shinwari Z, Allaith AAA, Giha HA (2019) LC-MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. Int J Mol Med 43(5):2118–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdulwahab RA, Allaith AAA, Shinwari Z, Alaiya A, Giha HA (2019) Association of TATA box-binding protein-associated factor RNA polymerase I subunit C (TAF1C) with T2DM. Gene 20(706):43–51

    Article  CAS  Google Scholar 

  44. Højlund K, Wrzesinski K, Larsen PM, Fey SJ, Roepstorff P, Handberg A et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278(12):10436–10442

    Article  PubMed  CAS  Google Scholar 

  45. Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, Roberts C et al (2010) Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59(1):33–42

    Article  CAS  PubMed  Google Scholar 

  46. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:1–9

    Article  CAS  Google Scholar 

  47. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J App Physiol 102(6):2389–2397

    Article  CAS  Google Scholar 

  48. Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G et al (2013) Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tantiwong P, Shanmugasundaram K, Monroy A, Ghosh S, Li M, DeFronzo RA et al (2010) NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab 299:E794-801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Codella R, Ialacqua M, Terruzzi I, Luzi L (2018) May the force be with you: why resistance training is essential for subjects with type 2 diabetes mellitus without complications. Endocrine 62(1):14–25

    Article  CAS  PubMed  Google Scholar 

  51. Hotamisligil GS (2017) Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47(3):406–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Romagnoli C, Pampaloni B, Brandi ML (2019) Muscle endocrinology and its relation with nutrition. Aging Clin Exp Res 31(6):783–792

    Article  PubMed  Google Scholar 

  53. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185

    Article  CAS  PubMed  Google Scholar 

  54. Próchnicki T, Latz E (2017) Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab 26(1):71–93

    Article  PubMed  CAS  Google Scholar 

  55. Shi J, Fan J, Su Q, Yang Z (2019) Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol (Lausanne) 10:703. https://doi.org/10.3389/fendo.2019.00703

    Article  Google Scholar 

  56. Pedersen BK, Febbraio M (2008) A muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406

    Article  CAS  PubMed  Google Scholar 

  57. Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE 8(5):e63983

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ip WE, Hoshi N, Shouval DS, Snapper S, Medzhitov R (2017) Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356(6337):513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36(6):377–393

    Article  CAS  PubMed  Google Scholar 

  62. Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  63. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473(24):4527–4550

    Article  CAS  PubMed  Google Scholar 

  64. Zhang L, Kimball SR, Jefferson LS, Shenberger JS (2009) Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1. Free Radic Biol Med 46(11):1500–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersen H, Gjerstad MD, Jakobsen J (2004) Atrophy of foot muscles. Diabetes Care 27(10):2382

    Article  PubMed  Google Scholar 

  68. Singleton JR, Smith AG, Russell JW, Feldman EL (2003) Microvascular complications of impaired glucose tolerance. Diabetes 52(12):2867

    Article  CAS  PubMed  Google Scholar 

  69. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  70. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R et al (2013) Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc 14(8):585–592

    Article  PubMed  Google Scholar 

  71. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D (2019) Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 12:1057–1072

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cetrone M, Mele A, Tricarico D (2014) Effects of the antidiabetic drugs on the age-related atrophy and sarcopenia associated with diabetes type II. Curr Diabetes Rev 10(4):231–237

    Article  CAS  PubMed  Google Scholar 

  73. Gao F, Hall S, Bach LA (2020) Myopathy secondary to empagliflozin therapy in type 2 diabetes. Endocrinol Diabetes Metab Case Rep 12(2020):20–0017

    Google Scholar 

  74. Labat V, Arnaud M, Miremont-Salamé G, Salvo F, Bégaud B, Pariente A (2017) Risk of myopathy associated with DPP-4 inhibitors in combination with statins: a disproportionality analysis using data from the WHO and French spontaneous reporting databases. Diabetes Care 40(3):e27–e29

    Article  CAS  PubMed  Google Scholar 

  75. Hirata Y, Nomura K, Senga Y, Okada Y, Kobayashi K, Okamoto S et al (2019) Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4(4):e124952

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayder A. Giha.

Ethics declarations

Conflicts of interest

There is no conflict of interest for all authors to declare.

Ethical standard statement or human and animal rights disclosure

Not applicable.

Informed consent

Not applicable.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giha, H.A., Alamin, O.A.O. & Sater, M.S. Diabetic sarcopenia: metabolic and molecular appraisal. Acta Diabetol 59, 989–1000 (2022). https://doi.org/10.1007/s00592-022-01883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01883-2

Keywords

Navigation