Skip to main content

Advertisement

Log in

Looking for the skeleton in the closet—rare genetic diagnoses in patients with diabetes and skeletal manifestations

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The precision medicine approach of tailoring treatment to the individual characteristics of each patient has been a great success in monogenic diabetes subtypes, highlighting the importance of accurate clinical and genetic diagnoses of the type of diabetes. We sought to describe three unique cases of childhood-onset diabetes in whom skeletal manifestations led to the revelation of a rare type of diabetes.

Methods 

Case-scenarios and review of the literature.

Results

Case 1: A homozygous mutation in TRMT10A, a tRNA methyltransferase, was identified in a 15-year-old boy with new-onset diabetes, developmental delay, microcephaly, dysmorphism, short stature and central obesity. The progressive apoptosis of pancreatic beta cells required insulin replacement therapy, with increased demand due to an unfavorable body composition. Case 2: Congenital generalized lipodystrophy type 1 was suspected in an adolescent male with an acromegaloid facial appearance, muscular habitus, and diabetes who presented with a pathological fracture in a cystic bone lesion. A homozygous mutation in AGPAT2, an acyl transferase which mediates the formation of phospholipid precursors, was identified. Leptin replacement therapy initiation resulted in a remarkable improvement in clinical parameters. Case 3: A 12-year-old boy with progressive lower limb weakness and pain was diagnosed with diabetic ketoacidosis. Diffuse diaphyseal osteosclerosis compatible with the diagnosis of Camurati-Engelmann disease and a heterozygous mutation in TGFβ1 were identified. Preservation of euglycemia by insulin replacement relieved pain, suggesting that the diabetic milieu may have augmented TGFβ1 overexpression.

Conclusion

Unraveling the precise genetic cause for the clinical manifestations led to the prediction of phenotypic manifestations, and enhanced the clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data are provided in the manuscript.

References

  1. Mayer-Davis EJ, Lawrence JM, Dabelea D et al (2017) Incidence trends of Type 1 and Type 2 diabetes among youths, 2002–2012. N Engl J Med 376:1419–1429. https://doi.org/10.1056/NEJMoa1610187

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leete P, Oram RA, McDonald TJ et al (2020) Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 63:1258–1267. https://doi.org/10.1007/s00125-020-05115-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Battaglia M, Ahmed S, Anderson MS et al (2020) Introducing the endotype concept to address the challenge of disease heterogeneity in Type 1 diabetes. Diabetes Care 43:5–12. https://doi.org/10.2337/dc19-0880

    Article  PubMed  Google Scholar 

  4. Delvecchio M, Pastore C, Giordano P (2020) Treatment options for MODY patients: a systematic review of literature. Diabetes Ther 11:1667–1685. https://doi.org/10.1007/s13300-020-00864-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shepherd M, Shields B, Hammersley S et al (2016) Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the UK pediatric diabetes population with monogenic diabetes. Diabetes Care 39:1879–1888. https://doi.org/10.2337/dc16-0645

  6. Ellard S, Lango Allen H, De Franco E et al (2013) Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 56:1958–1963. https://doi.org/10.1007/s00125-013-2962-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCarthy MI (2017) Painting a new picture of personalised medicine for diabetes. Diabetologia 60:793–799. https://doi.org/10.1007/s00125-017-4210-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Igoillo-Esteve M, Genin A, Lambert N et al (2013) tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013(9):e1003888. https://doi.org/10.1371/journal.pgen.1003888

    Article  CAS  Google Scholar 

  9. Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O (2014) TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet 51:581–586. https://doi.org/10.1136/jmedgenet-2014-102282

    Article  CAS  PubMed  Google Scholar 

  10. Machnicka MA (2013) MODOMICS: a database of RNA modification pathways: 2012 update. Nucleic Acids Res 41:D262–D267. https://doi.org/10.1093/nar/gks1007

    Article  CAS  PubMed  Google Scholar 

  11. Swinehart WE, Henderson JC, Jackman JE (2013) Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. RNA 19:1137–1146. https://doi.org/10.1261/rna.039651.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ontiveros RJ, Shen H, Stoute J et al (2020) Coordination of mRNA and tRNA methylations by TRMT10A. Proc Natl Acad Sci U S A 117:7782–7791. https://doi.org/10.1073/pnas.1913448117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao Z, Yan W, Peng J et al (2014) Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 42:509–525. https://doi.org/10.1073/pnas.1913448117

    Article  CAS  PubMed  Google Scholar 

  14. Cosentino C, Toivonen S, Diaz Villamil E et al (2018) Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 46:10302–10318. https://doi.org/10.1093/nar/gky839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin H, Zhou X, Chen X et al (2020) tRNA methyltransferase 10 homologue A (TRMT10A) mutation in a Chinese patient with diabetes, insulin resistance, intellectual deficiency and microcephaly. BMJ Open Diabetes Res Care 8:e001601. https://doi.org/10.1136/bmjdrc-2020-001601

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gorin K, Golomb M, Spitzen S et al (2020) A rare frameshift mutation in the AGPAT2 gene in a family from gaza with congenital generalized lipodystrophy. Clin Endocrinol (Oxf) 93:212–214. https://doi.org/10.1111/cen.14223

    Article  CAS  Google Scholar 

  17. Leung DW (2001) The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci 6:D944–D953. https://doi.org/10.2741/leung

    Article  CAS  PubMed  Google Scholar 

  18. Simha V, Garg A (2003) Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab 88:5433–5437. https://doi.org/10.1210/jc.2003-030835

    Article  CAS  PubMed  Google Scholar 

  19. Subauste AR, Das AK, Li X et al (2012) Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes 61:2922–2931. https://doi.org/10.2337/db12-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imai T, Takakuwa R, Marchand S et al (2004) Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA 101:4543–4547. https://doi.org/10.1073/pnas.0400356101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao-Borengasser A, Rassouli N, Varma V et al (2008) Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab 93:4431–4439. https://doi.org/10.1210/jc.2008-0782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agarwal AK, Sukumaran S, Cortés VA et al (2011) Human 1-acylglycerol-3-phosphate O-acyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2(-/-) gene lipodystrophic mice. J Biol Chem 286:37676–37691. https://doi.org/10.1074/jbc.M111.250449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teboul-Coré S, Rey-Jouvin C, Miquel A et al (2016) Bone imaging findings in genetic and acquired lipodystrophic syndromes: an imaging study of 24 cases. Skeletal Radiol 45:1495–1506. https://doi.org/10.1007/s00256-016-2457-9

    Article  PubMed  Google Scholar 

  24. Brown RJ, Araujo-Vilar D, Cheung PT et al (2016) The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J Clin Endocrinol Metab 101:4500–4511. https://doi.org/10.1210/jc.2016-2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chakarova N, Balabanski L, Dimova R, Shinkov A, Tankova T (2021) A novel AGPAT2 mutation associated with a case of late-diagnosed congenital generalized lipodystrophy type 1. Acta Diabetol 58:505–511. https://doi.org/10.1007/s00592-020-01639-w

  26. Lightbourne M, Brown RJ (2017) Genetics of lipodystrophy. Endocrinol Metab Clin North Am 46:539–554. https://doi.org/10.1016/j.ecl.2017.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stephen TL, Rutkowski MR, Allegrezza MJ et al (2014) Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 41:427–439. https://doi.org/10.1016/j.immuni.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han A, Zhao H, Li J, Pelikan R, Chai Y (2014) ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions. Mol Cell Biol 34:3120–3131. https://doi.org/10.1128/MCB.00623-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng YF, Yuan F, Guo H, Wu WZ (2014) TGF-β1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression. Mol Cell Biochem 397:131–138. https://doi.org/10.1007/s11010-014-2180-6

    Article  CAS  PubMed  Google Scholar 

  30. Park JG, Lee DH, Moon YS, Kim KH (2014) Reversine increases the plasticity of lineage-committed preadipocytes to osteogenesis by inhibiting adipogenesis through induction of TGF-β pathway in vitro. Biochem Biophys Res Commun 446:30–36. https://doi.org/10.1016/j.bbrc.2014.02.036

    Article  CAS  PubMed  Google Scholar 

  31. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774. https://doi.org/10.1210/er.2004-0001

    Article  CAS  PubMed  Google Scholar 

  32. Filvaroff E, Erlebacher A, Ye J et al (1999) Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267–4279

    Article  CAS  Google Scholar 

  33. Ota K, Quint P, Weivoda MM et al (2013) Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57:68–75. https://doi.org/10.1016/j.bone.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  34. Matt P, Schoenhoff F, Habashi J et al (2009) GenTAC Consortium. Circulating transforming growth factor-beta in Marfan syndrome. Circulation 120:526–532. https://doi.org/10.1161/CIRCULATIONAHA.108.841981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janssens K, Gershoni-Baruch R, Guañabens N et al (2000) Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet 26:273–275. https://doi.org/10.1038/81563

    Article  CAS  PubMed  Google Scholar 

  36. Chang AS, Hathaway CK, Smithies O, Kakoki M (2016) Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 310:F689–F696. https://doi.org/10.1152/ajprenal.00502.2015

    Article  CAS  PubMed  Google Scholar 

  37. Flores L, Näf S, Hernáez R, Conget I, Gomis R, Esmatjes E (2004) Transforming growth factor beta at clinical onset of Type 1 diabetes mellitus. A pilot study. Diabet Med 21:818–822. https://doi.org/10.1111/j.1464-5491.2004.01242.x

    Article  CAS  PubMed  Google Scholar 

  38. Cooper MS, Hewison M, Stewart PM (1999) Glucocorticoid activity, inactivity and the osteoblast. J Endocrinol 163:159–164. https://doi.org/10.1677/joe.0.1630159

    Article  CAS  PubMed  Google Scholar 

  39. Elena C, Chiara M, Angelica B et al (2018) Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: revision of literature and personal considerations. Curr Pharm Biotechnol 19:1210–1220. https://doi.org/10.2174/1389201020666190102145305

    Article  CAS  PubMed  Google Scholar 

  40. Ayyavoo A, Derraik JG, Cutfield WS, Hofman PL (2014) Elimination of pain and improvement of exercise capacity in Camurati-Engelmann disease with losartan. J Clin Endocrinol Metab 99:3978–3982. https://doi.org/10.1210/jc.2014-2025

    Article  CAS  PubMed  Google Scholar 

  41. Pilemann-Lyberg S, Lindhardt M, Persson F, Andersen S, Rossing P (2018) Serum uric acid and progression of diabetic nephropathy in type 1 diabetes. J Diabetes Complications 32:470–473. https://doi.org/10.1016/j.jdiacomp.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  42. Brener A, Peleg I, Rosenfeld T et al (2021) Beyond body mass index—body composition assessment by bioimpedance in routine endocrine practice. Endocr Pract 27:419–425. https://doi.org/10.1016/j.eprac.2020.10.013

    Article  PubMed  Google Scholar 

  43. McCarthy HD (2006) Body fat measurements in children as predictors for the metabolic syndrome: focus on waist circumference. Proc Nutr Soc 65:385–392. https://doi.org/10.1017/s0029665106005143

    Article  PubMed  Google Scholar 

  44. Kahn CR, Wang G, Lee KY (2019) Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 129:3990–4000. https://doi.org/10.1172/JCI129187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oral EA, Chan JL (2010) Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr Pract 16:324–333. https://doi.org/10.4158/EP09155.RA

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the subjects and their parents who participated in this study. The study was supported in part by the Morris Kahn family foundation, ISF Grant 2034/18 (to OSB) and the National Knowledge Center for Rare/Orphan Diseases of the Israel Ministry of Science, Technology and Space. The authors thank Esther Eshkol for editorial assistance.

Funding

None. The study was supported in part by the Morris Kahn family foundation, ISF Grant 2034/18 (to OSB) and the National Knowledge Center for Rare/Orphan Diseases of the Israel Ministry of Science, Technology and Space.

Author information

Authors and Affiliations

Authors

Contributions

AB and YL Conceptualization, AB, LZ, YW, OSB, TR, EC and YL Data curation, LZ, YW and OSB Investigation, AB Writing—original draft, AB, LZ, YW, OSB, TR, EC and YL Writing—review & editing, All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Avivit Brener.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki.

Informed consent

The patients and their parents gave their informed consent to publish their case.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brener, A., Zeitlin, L., Wilnai, Y. et al. Looking for the skeleton in the closet—rare genetic diagnoses in patients with diabetes and skeletal manifestations. Acta Diabetol 59, 711–719 (2022). https://doi.org/10.1007/s00592-022-01854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01854-7

Keywords

Navigation