Skip to main content

Advertisement

Log in

Diabetic retinopathy and cognitive dysfunction: a systematic review and meta-analysis

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 01 April 2022

Abstract

Background

This study aims to determine the relationship between diabetic retinopathy (DR) and cognitive dysfunction as well as explores the effects of DR on different cognitive domains.

Methods

A systematic search of PubMed, Embase, Web of Science, Wanfang data, CBM, CNKI, and VIP databases from their inception to October 2021. The pooled odds ratio (ORs), hazard ratio (HRs), and 95% confidence interval (CIs) were calculated.

Results

Twenty-two studies met the inclusion criteria and meta-analysis included 15 studies. The presence of DR reflects a higher risk of cognitive dysfunction (OR = 2.45; 95% CI: 1.76–3.41; HR = 1.34 95% CI: 1.10–1.62). Cohort study combined risk was 2.62 (95% CI: 1.93–3.56), in cross-sectional study was 2.07 (95% CI: 1.11–3.88). The pooled OR was 2.38 (95% CI: 1.83–3.10) and 3.11 (95% CI: 1.15–8.40) in Asia and Oceania. No such association was found in North America (OR = 2.22; 95% CI: 0.77–6.38). The pooled risk was 2.47 (95% CI: 1.76–3.48) in patients with T2DM, while did not identify an association between these two conditions in T1DM. The combined unadjusted and adjusted ORs were 2.72 (95% CI: 1.99–3.73) and 2.06 (95% CI: 1.49–2.85). DR severity and the risk of cognitive impairment showed a positive correlation and mainly impaired the speeds of psychomotor and information processing.

Conclusions

DR can help to identify people at high risk of cognitive dysfunction. Further studies are indispensable for exploring the relationship between DR and cognitive impairment in the patients for different age, gender and race, as well as to assess the risk of cognitive impairment in different populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Crosby-Nwaobi R, Sivaprasad S, Forbes A (2012) A systematic review of the association of diabetic retinopathy and cognitive impairment in people with type 2 diabetes. Diabetes Res Clin Pract 96:101–110. https://doi.org/10.1016/j.diabres.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  2. Crosby-Nwaobi RR, Sivaprasad S, Amiel S, Forbes A (2013) The relationship between diabetic retinopathy and cognitive impairment. Diabetes Care 36:3177–3186. https://doi.org/10.1111/jdi.12234

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prince M, Guerchet M, Prina M (eds) (2013) Policy brief for heads of government the global impact of dementia 2013–2050. Alzheimer’s Disease International, London

    Google Scholar 

  4. Jia J, Wei C, Chen S, Li F, Tang Y, Qin W et al. (2018) The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement 14:483–491. https://doi.org/10.1016/j.jalz.2017.12.006

    Article  PubMed  Google Scholar 

  5. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136. https://doi.org/10.1016/S0140-6736(09)62124-3

    Article  PubMed  Google Scholar 

  6. Hou Y, Cai Y, Jia Z, Shi S (2020) Risk factors and prevalence of diabetic retinopathy: a protocol for meta-analysis. Medicine (Baltimore) 99:e22695. https://doi.org/10.1097/MD.0000000000022695

    Article  Google Scholar 

  7. Ruta LM, Magliano DJ, Lemesurier R, Taylor HR, Zimmet PZ, Shaw JE (2013) Prevalence of diabetic retinopathy in type 2 diabetes in developing and developed countries. Diabet Med 304:387–398. https://doi.org/10.1111/dme.12119

    Article  Google Scholar 

  8. Sun L, Diao X, Gang X, Lv Y, Zhao X, Yang S et al. (2020) Risk factors for cognitive impairment in patients with type 2 diabetes. J Diabetes Res 2020:4591938. https://doi.org/10.1155/2020/4591938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Exalto LG, Biessels GJ, Karter AJ, Huang ES, Quesenberry CP Jr, Whitmer RA (2014) Severe diabetic retinal disease and dementia risk in type 2 diabetes. J Alzheimers Dis 3:109–117. https://doi.org/10.3233/JAD-132570

    Article  Google Scholar 

  10. Hugenschmidt CE, Lovato JF, Ambrosius WT, Bryan RN, Gerstein HC, Horowitz KR et al. (2014) The cross-sectional and longitudinal associations of diabetic retinopathy with cognitive function and brain MRI findings: the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care 37:3244–3252. https://doi.org/10.2337/dc14-0502

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA (2020) Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol 8:325–336. https://doi.org/10.1016/S2213-8587(19)30405-X

    Article  PubMed  Google Scholar 

  12. Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348. https://doi.org/10.1111/j.1469-7580.2005.00395.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deal JA, Sharrett AR, Albert M, Bandeen-Roche K, Burgard S, Thomas SD et al. (2019) Retinal signs and risk of incident dementia in the atherosclerosis risk in communities study. Alzheimers Dement 15:477–486. https://doi.org/10.1016/j.jalz.2018.10.002

    Article  PubMed  Google Scholar 

  14. Umegaki H, Iimuro S, Kaneko T, Araki A, Sakurai T, Ohashi Y et al. (2008) Factors associated with lower mini mental state examination scores in elderly Japanese diabetes mellitus patients. Neurobiol Aging 29:1022–1026. https://doi.org/10.1016/j.neurobiolaging.2007.02.004

    Article  PubMed  Google Scholar 

  15. de Bresser J, Reijmer YD, van den Berg E, Breedijk MA, Kappelle LJ, Viergever MA et al. (2010) Microvascular determinants of cognitive decline and brain volume change in elderly patients with type 2 diabetes. Dement Geriatr Cogn Disord 30:381–386. https://doi.org/10.1016/10.1159/000321354

    Article  PubMed  Google Scholar 

  16. Baker ML, Marino Larsen EK, Kuller LH, Klein R, Klein BE, Siscovick DS et al. (2007) Retinal microvascular signs, cognitive function, and dementia in older persons: the cardiovascular health study. Stroke 38:2041–2047. https://doi.org/10.1161/STROKEAHA.107.483586

    Article  PubMed  Google Scholar 

  17. Kadoi Y, Saito S, Fujita N, Goto F (2005) Risk factors for cognitive dysfunction after coronary artery bypass graft surgery in patients with type 2 diabetes. J Thorac Cardiovasc Surg 129:576–583. https://doi.org/10.1016/j.jtcvs.2004.07.012

    Article  PubMed  Google Scholar 

  18. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

    Article  PubMed  Google Scholar 

  19. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs an extension of the modified Airlie house classification. ETDRS report number 10. Ophthalmology 98:786–806

    Article  Google Scholar 

  20. Aldington SJ, Kohner EM, Meuer S, Klein R, Sjolie AK (1995) Methodology for retinal photography and assessment of diabetic retinopathy: the EURODIAB IDDM complications study. Diabetologia 38:437–444. https://doi.org/10.1007/BF00410281

    Article  CAS  PubMed  Google Scholar 

  21. Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220. https://doi.org/10.1037/h0026256

    Article  CAS  PubMed  Google Scholar 

  22. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  23. Ding J, Strachan MW, Reynolds RM, Frier BM, Deary IJ, Fowkes FG et al. (2010) Edinburgh type 2 diabetes study investigators. diabetic retinopathy and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes 59:2883–2889. https://doi.org/10.2337/db10-0752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferguson SC, Blane A, Perros P, McCrimmon RJ, Best JJ, Wardlaw J et al. (2003) Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes 52:149–156. https://doi.org/10.2337/diabetes.52.1.149

    Article  CAS  PubMed  Google Scholar 

  25. Oğuz TEKİN, Serdar ÇUKUR, Remzi KARADAĞ, Ayşe TUNCA, Olgun GÖKTAŞ, Adem ÖZKARA et al. (2009) Cognitive impairment among type 2 diabetic subjects and its relationship with long-term complications. Turk J Med Sci 39:661–669. https://doi.org/10.3906/sag-0803-18

    Article  Google Scholar 

  26. Ong SY, Cheung CY, Li X, Lamoureux EL, Ikram MK, Ding J et al. (2012) Visual impairment, age-related eye diseases, and cognitive function: the Singapore malay eye study. Arch Ophthalmol 130:895–900. https://doi.org/10.1001/archophthalmol.2012.152

    Article  PubMed  Google Scholar 

  27. Wessels AM, Rombouts SA, Remijnse PL, Boom Y, Scheltens P, Barkhof F et al. (2007) Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia 50:1763–1769. https://doi.org/10.1007/s00125-007-0714-0

    Article  CAS  PubMed  Google Scholar 

  28. Lee CS, Larson EB, Gibbons LE, Lee AY, McCurry SM, Bowen JD et al. (2019) Associations between recent and established ophthalmic conditions and risk of Alzheimer’s disease. Alzheimers Dement 15:34–41. https://doi.org/10.1007/10.1016/j.jalz.2018.06.2856

    Article  PubMed  Google Scholar 

  29. Rodill LG, Exalto LG, Gilsanz P, Biessels GJ, Quesenberry CP Jr, Whitmer RA (2018) Diabetic retinopathy and dementia in type 1 diabetes. Alzheimer Dis Assoc Disord 32:125–130. https://doi.org/10.1097/WAD.0000000000000230

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bruce DG, Davis WA, Starkstein SE, Davis TM (2014) Mid-life predictors of cognitive impairment and dementia in type 2 diabetes mellitus: the fremantle diabetes study. J Alzheimers Dis 3:S63-70. https://doi.org/10.3233/JAD-132654

    Article  CAS  Google Scholar 

  31. Gupta P, Gan ATL, Man REK, Fenwick EK, Sabanayagam C, Mitchell P et al. (2019) Association between diabetic retinopathy and incident cognitive impairment. Br J Ophthalmol 103:1605–1609. https://doi.org/10.1136/bjophthalmol-2018-312807

    Article  PubMed  Google Scholar 

  32. Jacobson AM, Ryan CM, Cleary PA, Waberski BH, Weinger K, Musen G et al. (2011) Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the diabetes control and complications trial (DCCT) cohort. Diabetologia 54:245–255. https://doi.org/10.1007/s00125-010-1883-9

    Article  CAS  PubMed  Google Scholar 

  33. Ryan CM, Geckle MO, Orchard TJ (2003) Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro- and macrovascular complications. Diabetologia 46:940–948. https://doi.org/10.1007/s00125-003-1128-2

    Article  CAS  PubMed  Google Scholar 

  34. Wong TY, Klein R, Sharrett AR, Nieto FJ, Boland LL, Couper DJ et al. (2002) Retinal microvascular abnormalities and cognitive impairment in middle-aged persons: the atherosclerosis risk in communities study. Stroke 33:1487–1492. https://doi.org/10.1161/01.str.0000016789.56668.43

    Article  PubMed  Google Scholar 

  35. Yu JH, Han K, Park S, Cho H, Lee DY, Kim JW et al. (2020) Incidence and risk factors for dementia in type 2 diabetes mellitus: a nationwide population-based study in Korea. Diabetes Metab J 44:113–124. https://doi.org/10.4093/dmj.2018.0216

    Article  PubMed  Google Scholar 

  36. Nunley KA, Rosano C, Ryan CM, Jennings JR, Aizenstein HJ, Zgibor JC et al. (2015) Clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes. Diabetes Care 38:1768–1776. https://doi.org/10.2337/dc15-0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oğurel T, Oğurel R, Özer MA, Türkel Y, Dağ E, Örnek K (2015) Mini-mental state exam versus montreal cognitive assessment in patients with diabetic retinopathy. Niger J Clin Pract 18:786–789. https://doi.org/10.4103/1119-3077

    Article  PubMed  Google Scholar 

  38. Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I (2003) Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74:70–76. https://doi.org/10.1136/jnnp.74.1.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawamura T, Umemura T, Hotta N (2015) Curious relationship between cognitive impairment and diabetic retinopathy. J Diabetes Investig 6:21–23. https://doi.org/10.1111/jdi.12234

    Article  PubMed  Google Scholar 

  40. Hughes D, Judge C, Murphy R, Loughlin E, Costello M, Whiteley W et al. (2020) Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA 323:1934–1944. https://doi.org/10.1001/jama.2020.4249

    Article  PubMed  Google Scholar 

  41. Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G et al. (2019) Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol 7:140–149. https://doi.org/10.1016/S2213-8587(18)30128-1

    Article  PubMed  Google Scholar 

  42. Sharma G, Parihar A, Talaiya T, Dubey K, Porwal B, Parihar MS (2020) Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol 31:1–14. https://doi.org/10.1515/jbcpp-2019-0105

    Article  CAS  Google Scholar 

  43. Li JQ, Welchowski T, Schmid M, Letow J, Wolpers C, Pascual-Camps I et al. (2020) Prevalence, incidence and future projection of diabetic eye disease in Europe: a systematic review and meta-analysis. Eur J Epidemiol 35:11–23. https://doi.org/10.1007/s10654-019-00560-z

    Article  CAS  PubMed  Google Scholar 

  44. Shalimova A, Graff B, Gąsecki D, Wolf J, Sabisz A, Szurowska E et al. (2019) Cognitive dysfunction in type 1 diabetes mellitus. J Clin Endocrinol Metab 104:2239–2249. https://doi.org/10.1210/jc.2018-01315

    Article  PubMed  Google Scholar 

  45. Overton M, Pihlsgård M, Elmståhl S (2019) Prevalence and incidence of mild cognitive impairment across subtypes, age, and sex. Dement Geriatr Cogn Disord 47:219–232. https://doi.org/10.1159/000499763

    Article  PubMed  Google Scholar 

  46. Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312:2551–2561. https://doi.org/10.1001/jama.2014.13806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barnes LL, Wilson RS, Schneider JA, Bienias JL, Evans DA, Bennett DA (2003) Gender, cognitive decline, and risk of AD in older persons. Neurology 60:1777–1781. https://doi.org/10.1212/01.wnl.0000065892.67099.2a

    Article  CAS  PubMed  Google Scholar 

  48. Weuve J, Barnes LL, Mendes de Leon CF, Rajan KB, Beck T, Aggarwal NT et al. (2018) Cognitive aging in black and white Americans: cognition, cognitive decline, and incidence of alzheimer disease dementia. Epidemiology 29:151–159. https://doi.org/10.1097/EDE.0000000000000747

    Article  PubMed  PubMed Central  Google Scholar 

  49. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x

    Article  CAS  PubMed  Google Scholar 

  50. Pandya SY, Clem MA, Silva LM, Woon FL (2016) Does mild cognitive impairment always lead to dementia? A review. J Neurol Sci 369:57–62. https://doi.org/10.1016/j.jns.2016.07.055

    Article  PubMed  Google Scholar 

  51. Roberts RO, Knopman DS, Mielke MM, Cha RH, Pankratz VS, Christianson TJ et al. (2014) Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology 82:317–325. https://doi.org/10.1212/WNL.0000000000000055

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sachdev PS, Lipnicki DM, Crawford J, Reppermund S, Kochan NA, Trollor JN et al. (2013) Factors predicting reversion from mild cognitive impairment to normal cognitive functioning: a population-based study. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0059649

    Article  CAS  Google Scholar 

  53. Elman JA, Jak AJ, Panizzon MS, Tu XM, Chen T, Reynolds CA et al. (2018) Underdiagnosis of mild cognitive impairment: a consequence of ignoring practice effects. Alzheimers Dement 10:372–381. https://doi.org/10.1016/j.dadm.2018.04.003

    Article  Google Scholar 

  54. Ozer S, Young J, Champ C, Burke M (2016) A systematic review of the diagnostic test accuracy of brief cognitive tests to detect amnestic mild cognitive impairment. Int J Geriatr Psychiatry 31:1139–1150. https://doi.org/10.1002/gps.4444

    Article  PubMed  Google Scholar 

  55. Cordell CB, Borson S, Boustani M, Chodosh J, Reuben D, Verghese J et al. (2013) Alzheimer’s association recommendations for operationalizing the detection of cognitive impairment during the medicare annual wellness visit in a primary care setting. Alzheimers Dement 9:141–150. https://doi.org/10.1016/j.jalz.2012.09.011

    Article  PubMed  Google Scholar 

  56. Zhuang L, Yang Y, Gao J (2021) Cognitive assessment tools for mild cognitive impairment screening. J Neurol 268:1615–1622. https://doi.org/10.1007/s00415-019-09506-7

    Article  PubMed  Google Scholar 

  57. Breton A, Casey D, Arnaoutoglou NA (2019) Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: meta-analysis of diagnostic accuracy studies. Int J Geriatr Psychiatry 34:233–242. https://doi.org/10.1002/gps.5016

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (No. 81873184).

Author information

Authors and Affiliations

Authors

Contributions

BM, KH, and MW came up with the original design of the research. MW, FM, ZW, and LF completed literature search, screening and data collection. MW, QG, FC, and LZ performed the statistical analysis. The data were analyzed by MW, FM, XL and BM. MW wrote the first draft of the article and all authors participated in the supplement and revision of the research.

Corresponding authors

Correspondence to Xiaohui Li or Bin Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes, Health Education and Psycho-Social Aspects managed by Giuseppe Querques.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 538 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Mei, F., Hu, K. et al. Diabetic retinopathy and cognitive dysfunction: a systematic review and meta-analysis. Acta Diabetol 59, 443–459 (2022). https://doi.org/10.1007/s00592-021-01829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01829-0

Keywords

Navigation