Skip to main content

Advertisement

Log in

YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Glomerular mesangial cell (MC) proliferation is one of the main pathological changes in diabetic nephropathy (DN), but its mechanism needs further elaboration. The Hippo and PI3K/Akt signalling pathways are involved in the regulation of MC proliferation, but their relationship in hyperglycaemia-induced MC proliferation has not been reported.

Methods

We used db/db mice and high-glucose-cultured mesangial cells to generate a diabetic nephropathy model. An MST1-knockdown plasmid was used to identify whether the PI3K/Akt pathway is linked to the Hippo pathway through MST1. LY294002 and SC79 were used to verify the role of the PI3K/Akt signalling pathway in MC cells. RNA silencing and overexpression were performed by using YAP and PTEN-expression/knockdown plasmids to investigate the function of YAP and PTEN, respectively, in the Hippo and PI3K/Akt signalling pathways.

Results

By examining a potential feedback loop, we found decreased phosphorylation of MST1 and Lats1 and increased PI3K/Akt activation in db/db mice and high glucose-treated MCs, along with increased MC proliferation. The results of our gene silencing experiment proved PI3K/Akt-mediated intervention in the Hippo pathway and the regulatory effect of YAP on PI3K/Akt through PTEN.

Conclusions

The Hippo pathway is inhibited under diabetic conditions, leading to YAP activation and promoting MC proliferation. The PI3K/Akt pathway is activated through the inhibitory effect of YAP on its repressor, PTEN. Finally, activation of the PI3K/Akt pathway inhibits the Hippo pathway, resulting in nuclear YAP accumulation and accelerating MC proliferation and DN formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BUN:

Blood urea nitrogen

Cr:

Creatinine

DN:

Diabetic nephropathy

ECM:

Extracellular matrix

FBG:

Fasting blood glucose

Lats1/2:

Large tumour suppressor 1/2 serine/threonine protein kinases

MC:

Mesangial cell

MOB1:

Mps-one binder 1

MST1/2:

Module consists of Ste20-like serine/threonine kinases 1/2

PAS:

Periodic acid Schiff

PI3K:

Phosphoinositide-3-kinase

TAZ:

Transcriptional co-activator with PDZ binding motif

TBST:

Tris-buffered saline with Tween

TEAD:

TEA domain

YAP:

Yes-associated protein

References

  1. Mishra R, Emancipator SN, Kern T, Simonson MS (2005) High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 67(1):82–93

    CAS  PubMed  Google Scholar 

  2. Rossing P (2006) Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 6(6):479–483

    PubMed  Google Scholar 

  3. Kanwar YS, Wada J, Sun L et al (2008) Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med 233(1):4–11

    CAS  Google Scholar 

  4. Garcia Z, Kumar A, Marques M, Cortes I, Carrera AC (2006) Phosphoinositide 3-kinase controls early and late events in mammalian cell division. EMBO J 25(4):655–661

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim S-H, Jang Y-W, Hwang P, Kim H-J, Han G-Y, Kim C-W (2012) The reno-protective effect of a phosphoinositide 3-kinase inhibitor wortmannin on streptozotocin-induced proteinuric renal disease rats. Exp Mol Med 44(1):45–51

    CAS  PubMed  Google Scholar 

  6. Lu C-C, Chu P-Y, Hsia S-M, Wu C-H, Tung Y-T, Yen G-C (2017) Insulin induction instigates cell proliferation and metastasis in human colorectal cancer cells. Int J Oncol 50(2):736–744

    CAS  PubMed  Google Scholar 

  7. Zhang H-H, Zhang Y, Cheng Y-N et al (2018) Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol Carcinog 57(1):44–56

    CAS  PubMed  Google Scholar 

  8. Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138(1):9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei H, Xianbo L, Chenying L et al (2012) The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFβ-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem 287(31):26245–26253

    Google Scholar 

  10. St John MAR, Tao WF, Fei XL et al (1999) Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21(2):182–186

    CAS  PubMed  Google Scholar 

  11. Tumaneng K, Schlegelmilch K, Russell RC et al (2012) YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao B, Lei Q-Y, Guan K-L (2008) The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20(6):638–646

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–552

    CAS  PubMed  Google Scholar 

  14. Yuan Z, Kim D, Shu S et al (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285(6):3815–3824

    CAS  PubMed  Google Scholar 

  15. Collak FK, Yagiz K, Luthringer DJ, Erkaya B, Cinar B (2012) Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1. J Biol Chem 287(28):23698–23709

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan R, Kim N-G, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA 110(7):2569–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Liu C-Y, Zha Z-Y et al (2009) TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284(20):13355–13362

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Ye X, Yu J et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye X, Deng Y, Lai Z-C (2012) Akt is negatively regulated by Hippo signaling for growth inhibition in Drosophila. Dev Biol 369(1):115–123

    CAS  PubMed  Google Scholar 

  20. Hubchak SC, Sparks EE, Hayashida T, Schnaper HW (2009) Rac1 promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. Am J Physiol Renal Physiol 297(5):F1316–F1323

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu Y, Gao Y-W, Yang Y (2018) SC79 protects dopaminergic neurons from oxidative stress. Oncotarget 9(16):12639–12648

    PubMed  Google Scholar 

  22. Chen Y-J, Kong L, Tung Z-Z et al (2019) Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother 111:1166–1175

    CAS  PubMed  Google Scholar 

  23. Zhu X, Cheng Y-Q, Du L et al (2015) Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Res 29(2):295–302

    CAS  PubMed  Google Scholar 

  24. Du L, Li C, Qian X et al (2019) Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 146:104320

    Google Scholar 

  25. Lu Q, Zhou Y, Hao M et al (2018) The mTOR promotes oxidative stress-induced apoptosis of mesangial cells in diabetic nephropathy. Mol Cell Endocrinol 473:31–43

    CAS  PubMed  Google Scholar 

  26. Lu Q, Ji X-J, Zhou Y-X et al (2015) Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res 99:237–247

    CAS  PubMed  Google Scholar 

  27. Thrailkill KM, Bunn RC, Fowlkes JL (2009) Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 35(1):1–10

    CAS  PubMed  Google Scholar 

  28. Haneda M, Kikkawa R, Horide N et al (1991) Glucose enhances type IV collagen production in cultured rat glomerular mesangial cells. Diabetologia 34(3):198–200

    CAS  PubMed  Google Scholar 

  29. Wong JS, Meliambro K, Ray J, Campbell KN (2016) Hippo signaling in the kidney: the good and the bad. Am J Physiol Renal Physiol 311(2):F241–F248

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tumaneng K, Russell RC, Guan K-L (2012) Organ Size Control by Hippo and TOR Pathways. Curr Biol 22(9):R368–R379

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu F-X, Guan K-L (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong W, Guan K-L (2012) The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 23(7):785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong J, Feldmann G, Huang J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257

    CAS  PubMed  Google Scholar 

  35. Pan D (2010) The Hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barry ER, Morikawa T, Butler BL et al (2013) Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493(7430):106–112

    PubMed  Google Scholar 

  37. Chen J, Harris RC (2016) Interaction of the EGF receptor and the hippo pathway in the diabetic kidney. J Am Soc Nephrol JASN 27(6):1689–1690

    CAS  PubMed  Google Scholar 

  38. Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283(9):5496–5509

    CAS  PubMed  Google Scholar 

  39. Zhao B, Wei X, Li W et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cinar B, Fang P-K, Lutchman M et al (2007) The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26(21):4523–4534

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ardestani A, Maedler K (2016) MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia 59(9):1843–1849

    CAS  PubMed  Google Scholar 

  42. Ardestani A, Paroni F, Azizi Z et al (2014) MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med 20(4):385–400

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27(41):5477–5485

    CAS  PubMed  Google Scholar 

  44. Pal A, Barber TM, Van de Bunt M et al (2012) PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med 367(11):1002–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou M, Li G, Zhu L et al (2020) Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. J Cell Mol Med 24(10):5695–5706

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Yan X, Wang F et al (2019) Down-regulated lncRNA SLC25A5-AS1 facilitates cell growth and inhibits apoptosis via miR-19a-3p/PTEN/PI3K/AKT signalling pathway in gastric cancer. J Cell Mol Med 23(4):2920–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu L, Hu X, Cai G-Y et al (2012) High glucose-induced hypertrophy of mesangial cells is reversed by connexin43 overexpression via PTEN/Akt/mTOR signaling. Nephrol Dial Transpl 27(1):90-U525

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 81473257, 81400741), the Qing Lan project, the Natural Science Foundation of Jiangsu Province (Grant No. BK20151155), the “333” Foundation of Jiangsu Province (Grant No. BRA2015329), the Key Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No.15KJA310005), Jiangsu Overseas Research & Training Program for University Young & Middle-aged Teachers and Presidents, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Postgraduate Research and Innovation Program of Xuzhou Medical University of Pharmacy (Grant No. KYCX17_1711).

Author information

Authors and Affiliations

Authors

Contributions

LD, QL, and XY participated in research design. XQ, YL, CL, XL, HJ, YL, LX, and WW conducted experiments. XQ, LH, HJ, YL, LX, and WW performed data analysis. XQ, LH, MH, YL, LD, QL, and XY wrote or contributed to the writing of the manuscript.

Corresponding author

Correspondence to Qian Lu.

Ethics declarations

Conflict of interest

The authors have no confict of interest to declare.

Ethical approval

Animal experiments were conducted in accordance with the principles provided by the National Institutes of Health (NIH) Guideline for the Care and Use of Laboratory Animals. Approval to proceed with this experiment was issued by the Animal Ethics Committee (201707w012) of Xuzhou Medical University, and protocols also conformed to the Guidelines for Ethical Conduct in the Care and Use of Animals.

Informed consent

For this type of study informed consent is not required.

Additional information

This article belongs to the topical collection Diabetic Nephropathy, managed by Giuseppe Pugliese.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The plasmids are efficient, and the siControl plasmids have no significant effect on the expression of relative proteins. (a) Expression of YAP in mouse MCs by Western blotting and statistical result of YAP protein expression. (b) Expression of Mst1 in mouse MCs by Western blotting and statistical result of Mst1 protein expression. (c) Expression and statistical results of relative proteins. Data are expressed as mean ± SD, n = 3. (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., He, L., Hao, M. et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol 58, 47–62 (2021). https://doi.org/10.1007/s00592-020-01582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-020-01582-w

Keywords

Navigation