Skip to main content
Log in

Insulin-mimetic effects of short-term rapamycin in type 1 diabetic patients prior to islet transplantation

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Background

The immunosuppressive drug rapamycin may influence insulin sensitivity in insulin-responsive tissues.

Aims

This study aimed at evaluating the effectiveness of rapamycin pre-treatment before pancreatic islet allotransplantation (ITx) in patients with type 1 diabetes mellitus (T1DM).

Methods

Forty-one T1DM patients were studied. Thirteen patients with poor glycemic control underwent a short-term rapamycin treatment before ITx (Group 1), and they were compared to 28 patients undergoing ITx without rapamycin pre-treatment (Group 2). Outcomes were daily insulin requirement (DIR), fasting blood glucose, HbA1c, C-peptide and the SUITO index of beta-cell function. A subgroup of patients pre-treated with rapamycin before ITx underwent euglycemic hyperinsulinemic clamp with [6,6-2H2] glucose before and after ITx to evaluate insulin sensitivity.

Results

We found a significant reduction in DIR after rapamycin pre-treatment (− 8 ± 6 U/day, mean ± SD, p < 0.001) and 1 year after ITx. DIR reduction 1 year after ITx was greater in Group 1 as compared to Group 2 (− 37 ± 15 vs. − 19 ± 13 U/day, p = 0.005) and remained significant after adjusting for gender, age, glucose and baseline HbA1c (beta = 18.2 ± 5.9, p = 0.006). Fasting glucose and HbA1c significantly decreased 1 year after ITx in Group 1 (HbA1c: − 2.1 ± 1.4%, p = 0.002), while fasting C-peptide (+0.5 ± 0.3 nmol/l, p = 0.002) and SUITO index increased (+57.4 ± 39.7, p = 0.016), without differences between the two groups. Hepatic glucose production decreased after rapamycin pre-treatment (− 1.1 ± 1.1 mg/kg/min, p = 0.04) and after ITx (− 1.6 ± 0.6 mg/kg/min, p = 0.015), while no changes in peripheral glucose disposal were observed.

Conclusions

Rapamycin pre-treatment before ITx succeeds in reducing insulin requirement, enhancing hepatic insulin sensitivity. This treatment may improve short-term ITx outcomes, possibly in selected patients with T1DM complicated by insulin resistance.

Clinical Trial

Clinicaltrials.gov NCT01060605; NCT00014911.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

DIR:

Daily insulin requirement

GCMS:

Gas chromatography–mass spectrometry

IL-2:

Interleukin-2

ITx:

Islet transplantation

mTOR:

The mechanistic target of rapamycin

mTORC:

mTOR complex

SD:

Standard deviation

SE:

Standard error

SUITO:

Secretory Unit of Islet Transplantation Objects

T1DM:

Type 1 diabetes mellitus

References

  1. Shapiro AM, Pokrywczynska M, Ricordi C (2017) Clinical pancreatic islet transplantation. Nat Rev Endocrinol 13:268–277

    Article  PubMed  CAS  Google Scholar 

  2. Codella R, Adamo M, Maffi P, Piemonti L, Secchi A, Luzi L (2017) Ultra-marathon 100 km in an islet-transplanted runner. Acta Diabetol 54:703–706

    Article  PubMed  Google Scholar 

  3. Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L (2016) The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 53:683–691

    Article  PubMed  CAS  Google Scholar 

  4. Fiorina P, Folli F, Bertuzzi F et al (2003) Long-term beneficial effect of islet transplantation on diabetic macro-/microangiopathy in type 1 diabetic kidney-transplanted patients. Diabetes Care 26(4):1129–1136

    Article  PubMed  Google Scholar 

  5. Fiorina P, Folli F, Maffi P et al (2003) Islet transplantation improves vascular diabetic complications in patients with diabetes who underwent kidney transplantation: a comparison between kidney-pancreas and kidney-alone transplantation. Transplantation 75(8):1296–1301

    Article  PubMed  Google Scholar 

  6. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  7. Benedini S, Ruffini E, Terruzzi I, Mancuso M, Luzi L (2008) Glucose and leucine metabolism in lung transplanted patients on low dose of steroids for immunosuppressive therapy. Transplant Proc 40:1566–1571

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330

    Article  PubMed  CAS  Google Scholar 

  9. Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162

    Article  PubMed  CAS  Google Scholar 

  10. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    Article  PubMed  CAS  Google Scholar 

  11. Shigeyama Y, Kobayashi T, Kido Y et al (2008) Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol 28:2971–2979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Luzi L, Hering BJ, Socci C et al (1996) Metabolic effects of successful intraportal islet transplantation in insulin-dependent diabetes mellitus. J Clin Invest 97:2611–2618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Takita M, Matusmoto S (2012) SUITO index for evaluation of clinical islet transplantation. Cell Transplant 21:1341–1347

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benedini S, Fiocchi R, Battezzati A et al (2002) Energy metabolism in diabetic and nondiabetic heart transplant recipients. Diabetes Care 25:530–536

    Article  PubMed  Google Scholar 

  18. Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430

    Article  PubMed  CAS  Google Scholar 

  19. Collaborative Islet Transplant Registry. Eighth annual report. CITR 2014 www.citregistry.org. Accessed 8 Dec 2016

  20. D’Addio F, Maffi P, Vezzulli P et al (2014) Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care 37(1):267–276

    Article  PubMed  CAS  Google Scholar 

  21. Fiorina P, Gremizzi C, Maffi P et al (2005) Islet transplantation is associated with an improvement of cardiovascular function in type 1 diabetic kidney transplant patients. Diabetes Care 28(6):1358–1365

    Article  PubMed  Google Scholar 

  22. Matsumoto S, Takita M, Chaussabel D et al (2011) Improving efficacy of clinical islet transplantation with iodixanol-based islet purification, thymoglobulin induction, and blockage of IL-1β and TNF-α. Cell Transplant 20:1641–1647

    Article  PubMed  Google Scholar 

  23. Citro A, Cantarelli E, Maffi P et al (2012) CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Invest 122:3647–3651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rachdi L, Balcazar N, Osorio-Duque F et al (2008) Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci USA 105:9250–9255

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pende M, Kozma SC, Jaquet M et al (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408:994–997

    Article  PubMed  CAS  Google Scholar 

  26. Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA (2011) Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 60:827–837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor/mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  28. Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19:373–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Krebs M, Brunmair B, Brehm A et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56:1600–1607

    Article  PubMed  CAS  Google Scholar 

  31. Fraenkel M, Ketzinel-Gilad M, Ariav Y et al (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957

    Article  PubMed  CAS  Google Scholar 

  32. Houde VP, Brule S, Festuccia WT et al (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Johnston O, Rose CL, Webster AC, Gill JS (2008) Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19:1411–1418

    Article  PubMed  PubMed Central  Google Scholar 

  34. Piemonti L, Maffi P, Monti L et al (2011) Beta cell function during rapamycin monotherapy in long-term type 1 diabetes. Diabetologia 54:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by Telethon-JDRF JT01Y01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Benedini.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Massimo Porta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedini, S., Ermetici, F., Briganti, S. et al. Insulin-mimetic effects of short-term rapamycin in type 1 diabetic patients prior to islet transplantation. Acta Diabetol 55, 715–722 (2018). https://doi.org/10.1007/s00592-018-1141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1141-z

Keywords

Navigation