Skip to main content

Advertisement

Log in

Incidence of type 1 diabetes in age groups above 15 years: facts, hypothesis and prospects for future epidemiologic research

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Although onset of type 1 diabetes can occur in adulthood, epidemiological data are scarce, limiting our potential to identify unknown determinants of the disease. Paucity of registries expanding the recruitment of incident cases up to adulthood, atypical clinical features of type 1 diabetes at onset, misclassification of type 1 as type 2 diabetes and little use of markers of β-cell autoimmunity represents major obstacles in studying the risk of type 1 diabetes in adults. New strategies in study design, data collection and analyses may overcome these problems in the future. Population-based surveys and registries including adulthood; use of etiological rather than clinical criteria to define type 1 diabetes; availability of electronic health records as prescription data sources to avoid missing data; and application of proper statistical methods will be instrumental to gain better insight on the epidemiology and natural history of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Forlenza GP, Rewers M (2011) The epidemic of type 1 diabetes: What is it telling us? Curr Opin Endocrinol Diabetes Obes 18:248–251

    Article  PubMed  Google Scholar 

  2. Knip M, Simell O (2012) Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med 2:a007690

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pociot F, Akolkar B, Concannon P et al (2010) Genetics of type 1 diabetes: What’s next? Diabetes 59:1561–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pugliese A (2013) The multiple origins of type 1 diabetes. Diabet Med 30:135–146

    Article  CAS  PubMed  Google Scholar 

  5. Knip M (2012) Descriptive epidemiology of type 1 diabetes-is it still in? Diabetologia 55:1227–1230

    Article  CAS  PubMed  Google Scholar 

  6. Paula A, Diaz-Valencia PA, Bougnères P, Valleron AJ (2015) Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15:255

    Article  Google Scholar 

  7. Karjalainen J, Salmela P, Ilonen J, Surcel HM, Knip M (1989) A comparison of childhood and adult type I diabetes mellitus. N Engl J Med 320:881–886

    Article  CAS  PubMed  Google Scholar 

  8. Bruno G, Arcari R, Pagano A, Cerutti F, Berrino M, Pagano G (2000) Genetic heterogeneity by age at onset of type 1 diabetes: higher prevalence of patients with 0 susceptible heterodimers in adults than in children in the registry of Turin, Italy. Diabetologia 43:260–261

    Article  CAS  PubMed  Google Scholar 

  9. Bruno G, Cerutti F, Merletti F et al (2005) Residual β-cell function and male/female ratio are higher in incident young adults than in children: the registry of type 1 diabetes of the province of Turin, Italy, 1984–2000. Diabetes Care 28:312–317

    Article  PubMed  Google Scholar 

  10. Vermeulen I, Weets I, Asanghanwa M et al (2011) Contribution of antibodies against IA-2β and zinc transporter 8 to classification of diabetes diagnosed under 40 years of age. Diabetes Care 34:1760–1765

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leslie RD, Delli Castelli M (2004) Age-dependent influences on the origins of autoimmune diabetes: evidence and implications. Diabetes 53:3033–3040

    Article  CAS  PubMed  Google Scholar 

  12. Gale EA (2005) Latent autoimmune diabetes in adults: a guide for the perplexed. Diabetologia 48:2195–2199

    Article  CAS  PubMed  Google Scholar 

  13. Gale EA (2006) Declassifying diabetes. Diabetologia 49:1989–1995

    Article  CAS  PubMed  Google Scholar 

  14. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383:1084–1094

    Article  PubMed  Google Scholar 

  15. Rolandsson O, Palmer JP (2010) Latent autoimmune diabetes in adults (LADA) is dead: long live autoimmune diabetes! Diabetologia 53:1250–1253

    Article  CAS  PubMed  Google Scholar 

  16. Redondo MJ (2013) LADA: time for a new definition. Diabetes 62:339–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiang Y, Huang G, Shan Z et al (2015) Glutamic acid decarboxylase autoantibodies are dominant but insufficient to identify most Chinese with adult-onset non-insulin requiring autoimmune diabetes: LADA China study 5. Acta Diabetol 52:1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruno G, Runzo C, Cavallo-Perin P et al (2005) Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: population-based registry in the Province of Turin, Italy. Diabetes Care 28:2613–2619

    Article  PubMed  Google Scholar 

  19. Hawa MI, Kolb H, Schloot N et al (2013) Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: action LADA 7. Diabetes Care 36:908–913

    Article  PubMed  PubMed Central  Google Scholar 

  20. Green A, Gale EAM, Patterson CC (1992) Incidence of childhood-onset insulin-dependent diabetes mellitus: the EURODIAB ACE study. Lancet 339:905–909

    Article  CAS  PubMed  Google Scholar 

  21. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 23:1516–1526

    Article  CAS  PubMed  Google Scholar 

  22. The DIAMOND Project Group (2006) Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med 23:857–866

    Article  Google Scholar 

  23. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033

    Article  PubMed  Google Scholar 

  24. Soltesz G, Patterson CC, Dahlquist G, EURODIAB Study Group (2007) Worldwide childhood type 1 diabetes incidence–what can we learn from epidemiology? Pediatr Diabetes 8(Suppl 6):6–14

    Article  PubMed  Google Scholar 

  25. Bruno G, Maule M, Biggeri A et al (2013) More than twenty years of registration of type 1 diabetes in Sardinian children: temporal variations of incidence with age, period of diagnosis and year of birth. Diabetes 62:3542–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patterson CC, Gyürüs E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55:2142–2147

    Article  CAS  PubMed  Google Scholar 

  27. Harjutsalo V, Sund R, Knip M, Groop PH (2013) Incidence of type 1 diabetes in Finland. JAMA 310:427–428

    Article  CAS  PubMed  Google Scholar 

  28. Berhan Y, Waernbaum I, Lind T, Mollsten A, Dahlquist G, Swedish Childhood Diabetes Study Group (2011) Thirty years of prospective nationwide incidence of childhood type 1 diabetes: the accelerating increase by time tends to level off in Sweden. Diabetes 60:577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skrivarhaug T, Stene LC, Drivvoll AK, Strøm H, Joner G, Norwegian Childhood Diabetes Study Group (2014) Incidence of type 1 diabetes in Norway among children aged 0–14 years between 1989 and 2012: has the incidence stopped rising? Results from the Norwegian Childhood Diabetes Registry. Diabetologia 57:57–62

    Article  PubMed  Google Scholar 

  30. Lawrence JM, Imperatore G, Dabelea D et al (2014) Trends in incidence of type 1 diabetes among non-Hispanic white youth in the US, 2002–2009. Diabetes 63:3938–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kyvik KO, Nystrom L, Gorus F et al (2004) The epidemiology of type 1 diabetes mellitus is not the same in young adults as in children. Diabetologia 47:377–384

    Article  CAS  PubMed  Google Scholar 

  32. Lammi N, Blomstedt PA, Moltchanova E, Eriksson JG, Tuomilehto J, Karvonen M (2008) Marked temporal increase in the incidence of type 1 and type 2 diabetes among young adults in Finland. Diabetologia 51:897–899

    Article  CAS  PubMed  Google Scholar 

  33. Ostrauskas R, Žalinkevičius R, Jurgevičienė N, Radzevičienė L, Lašaitė L (2011) The incidence of type 1 diabetes mellitus among 15–34 years aged Lithuanian population: 18-year incidence study based on prospective databases. BMC Public Health 11:813

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bruno G, Novelli G, Panero F et al (2009) The incidence of type 1 diabetes is increasing in both children and young adults in Northern Italy: 1984–2004 temporal trends. Diabetologia 52:2531–2535

    Article  CAS  PubMed  Google Scholar 

  35. Carstensen B, Borch-Johnsen K (2011) Register-based studies of diabetes. Scand J Public Health 39(7 Suppl):175–179

    Article  PubMed  Google Scholar 

  36. Joner G, Søvik O (1991) The incidence of type 1 (insulin-dependent) diabetes mellitus 15–29 years in Norway 1978–1982. Diabetologia 34:271–274

    Article  CAS  PubMed  Google Scholar 

  37. Pundziute-Lycka A, Dahlquist G, Nystrom L et al (2002) The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0–34 years group in Sweden 1983–1998. Diabetologia 45:783–791

    Article  CAS  PubMed  Google Scholar 

  38. Dahlquist GG, Nystrom L, Patterson CC (2011) Incidence of type 1 diabetes in Sweden among individuals aged 0–34 years, 1983–2007: an analysis of time trends. Diabetes Care 34:1754–1759

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rawshani A, Landin-Olsson M, Svensson AM et al (2014) The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods. Diabetologia 57:1375–1381

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feltbower RG, McKinney PA, Parslow RC, Stephenson CR, Bodansky HJ (2003) Type 1 diabetes in Yorkshire, UK: time trends in 0–14 and 15–29-year-olds, age at onset and age-period-cohort modelling. Diabet Med 20:437–441

    Article  CAS  PubMed  Google Scholar 

  41. Imkampe AK, Gulliford MC (2011) Trends in type 1 diabetes incidence in the UK in 0- to 14-year-olds and in 15- to 34-year-olds, 1991–2008. Diabet Med 28:811–814

    Article  PubMed  Google Scholar 

  42. Rami B, Waldhör T, Schober E (2001) Diabetes Working Group of Upper Austria. Incidence of type I diabetes mellitus in children and young adults in the province of Upper Austria, 1994–1996. Diabetologia 44(Suppl 3):B45–B47

    Article  PubMed  Google Scholar 

  43. Weets I, Rooman R, Coeckelberghs M et al (2007) The age at diagnosis of type 1 diabetes continues to decrease in Belgian boys but not in girls: a 15-year survey. Diabetes Metab Res Rev 23:637–643

    Article  CAS  PubMed  Google Scholar 

  44. Weets I, De Leeuw IH, Du Caju MV et al (2002) The incidence of type 1 diabetes in the age group 0-39 years has not increased in Antwerp (Belgium) between 1989 and 2000: evidence for earlier disease manifestation. Diabetes Care 25:840–846

    Article  PubMed  Google Scholar 

  45. Kadiki OA, Reddy MR, Marzouk AA (1996) Incidence of insulin-dependent diabetes (IDDM) and non-insulin-dependent diabetes (NIDDM) (0–34 years at onset) in Benghazi, Libya. Diabetes Res Clin Pract 32:165–173

    Article  CAS  PubMed  Google Scholar 

  46. Duderstadt SK, Rose CE Jr, Real TM et al (2012) Vaccination and risk of type 1 diabetes mellitus in active component U.S. Military, 2002–2008. Vaccine 30:813–819

    Article  PubMed  Google Scholar 

  47. Yip PSF, Bruno G, Tajima N et al (1995) Capture-recapture and multiple-record systems estimation I: history and theoretical development. Am J Epidemiol 142:1047–1058

    Google Scholar 

  48. Yip PSF, Bruno G, Tajima N et al (1995) Capture-recapture and multiple-record systems estimation II: applications in human diseases. Am J Epidemiol 142:1059–1068

    Google Scholar 

  49. Weets I, Van Autreve J, Van der Auwera BJ et al (2001) Male-to-female excess in diabetes diagnosed in early adulthood is not specific for the immune-mediated form nor is it HLA-DQ restricted: possible relation to increased body mass index. Diabetologia 44:40–47

    Article  CAS  PubMed  Google Scholar 

  50. Bruno G, Merletti F, Vuolo A, Pisu E, Giorio M, Pagano G (1993) Sex differences in the incidence of insulin-dependent diabetes (IDDM) in the age group 15–29: higher risk in males in the Province of Turin (Italy). Diabetes Care 16:133–136

    Article  CAS  PubMed  Google Scholar 

  51. Gale EA (2005) Spring harvest? Reflections on the rise of type 1 diabetes. Diabetologia 48:2445–2450

    Article  CAS  PubMed  Google Scholar 

  52. LaPorte RE, McCarty D, Bruno G, Tajima N, Baba S (1993) Counting diabetes in the next millennium. Application of capture-recapture technology. Diabetes Care 16:528–534

    Article  CAS  PubMed  Google Scholar 

  53. Bruno G, LaPorte R, Merletti F, Biggeri A, McCarty D, Pagano G (1994) National diabetes programmes: application of capture-recapture to “count” diabetes? Diabetes Care 17:548–556

    Article  CAS  PubMed  Google Scholar 

  54. Jones HE, Hickman M, Welton NJ, De Angelis D, Harris RJ, Ades AE (2014) Recapture or precapture? Fallibility of standard capture-recapture methods in the presence of referrals between sources. Am J Epidemiol 179:1383–1393

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhong VW, Pfaff ER, Beavers DP et al (2014) Use of administrative and electronic health record data for development of automated algorithms for childhood diabetes case ascertainment and type classification: the SEARCH for Diabetes in Youth Study. Pediatr Diabetes 15:573–584

    Article  PubMed  PubMed Central  Google Scholar 

  56. Klompas M, Eggleston E, McVetta J, Lazarus R, Li L, Platt R (2013) Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care 36:914–921

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vichi M, Iafusco D, Galderisi A, Stazi MA, Nisticò L (2014) An easy, fast, effective tool to monitor the incidence of type 1 diabetes among children aged 0–4 years in Italy: the Italian Hospital Discharge Registry (IHDR). Acta Diabetol. 51(2):287–294. doi:10.1007/s00592-014-0556-4

    Article  CAS  PubMed  Google Scholar 

  58. Mølbak AC, Christau B, Marner B, Borch-Johnsen K, Nerup J (1994) Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabetic Med 11:650–655

    Article  PubMed  Google Scholar 

  59. Strøm H, Selmer R, Birkeland KI et al (2014) No increase in new users of blood glucose-lowering drugs in Norway 2006–2011: a nationwide prescription database study. BMC Public Health 14:520

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lammi N, Moltchanova E, Blomstedt P et al (2007) The effect of birth order and parental age on the risk of type 1 and 2 diabetes among young adults. Diabetologia 50:2433–2438

    Article  CAS  PubMed  Google Scholar 

  61. Bruno G, Pagano G, Faggiano F, De Salvia A, Merletti F (2000) Effect of Sardinian heritage on risk and age at onset of type 1 diabetes: a demographical case-control study of Sardinian migrants. Int J Epidemiol 29:532–535

    Article  CAS  PubMed  Google Scholar 

  62. Bruno G, Spadea T, Picariello R et al (2013) Early life socioeconomic indicators and risk of type 1 diabetes in children and young adults. J Pediatr 162:600–605

    Article  PubMed  Google Scholar 

  63. Olsson L, Ahlbom A, Grill V, Midthjell K, Carlsson S (2011) High levels of education are associated with an increased risk of latent autoimmune diabetes in adults: results from the Nord-Trøndelag health study. Diabetes Care 34:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carstensen B (2007) Age-period-cohort models for the Lexis diagram. Stat Med 26:3018–3045

    Article  CAS  PubMed  Google Scholar 

  65. Svensson J, Lyngaae-Jørgensen A, Carstensen B, Simonsen LB, Mortensen HB, Danish Childhood Diabetes Registry (2009) Long-term trends in the incidence of type 1 diabetes in Denmark: the seasonal variation changes over time. Pediatr Diabetes 10:248–254

    Article  PubMed  Google Scholar 

  66. Nyström L, Dahlquist G, Rewers M, Wall S, The Swedish Childhood Diabetes Study (1990) An analysis of the temporal variation in diabetes incidence 1978–1987. Int J Epidemiol 19:141–146

    Article  PubMed  Google Scholar 

  67. Tuomilehto J, Rewers M, Reunanen A et al (1991) Increasing trend in Type 1 (insulin-dependent) diabetes mellitus in childhood in Finland. Analysis of age, calendar time and birth cohort effects during 1965 to 1984. Diabetologia 34:282–287

    Article  CAS  PubMed  Google Scholar 

  68. Aamodt G, Stene LC, Njølstad PR, Søvik O, Joner G, The Norwegian Childhood Diabetes Study Group (2007) Spatiotemporal trends and age-period-cohort modeling of the incidence of type 1 diabetes among children aged <15 years in Norway 1973–1982 and 1989–2003. Diabetes Care 30:884–889

    Article  PubMed  Google Scholar 

  69. Dahlquist G, Mustonen L (2000) Analysis of 20 years of prospective registration of childhood onset diabetes time trends and birth cohort effects. Swedish Childhood Diabetes Study Group. Acta Paediatr 89:1231–1237

    Article  CAS  PubMed  Google Scholar 

  70. Bruno G, Maule M, Merletti F et al (2010) Age-period-cohort analysis of 1990–2003 incidence time trends of childhood diabetes in Italy: the RIDI study. Diabetes 59:2281–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gorham ED, Barrett-Connor E, Highfill-McRoy RM et al (2009) Incidence of insulin-requiring diabetes in the US military. Diabetologia 52:2087–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bruno G, De Salvia A, Arcari R et al (1999) Clinical, immunological, and genetic heterogeneity of diabetes in an Italian population-based cohort of lean newly diagnosed patients aged 30–54 years. Diabetes Care 22:50–55

    Article  CAS  PubMed  Google Scholar 

  73. Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract 82:247–255

    Article  CAS  PubMed  Google Scholar 

  74. Thunander M, Törn C, Petersson C, Ossiansson B, Fornander J, Landin-Olsson M (2012) Levels of C-peptide, body mass index and age, and their usefulness in classification of diabetes in relation to autoimmunity, in adults with newly diagnosed diabetes in Kronoberg, Sweden. Eur J Endocrinol 166:1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bruno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

This paper do not include individual data.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, G., Gruden, G. & Songini, M. Incidence of type 1 diabetes in age groups above 15 years: facts, hypothesis and prospects for future epidemiologic research. Acta Diabetol 53, 339–347 (2016). https://doi.org/10.1007/s00592-015-0835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0835-8

Keywords

Navigation