Skip to main content

Advertisement

Log in

Is immediate weight bearing safe for subtrochanteric femur fractures in elderly patients treated by cephalomedullary nailing? A multicentric study in one hundred eighty-two patients

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

Biomechanical superiority of intramedullary nails over extramedullary implants has been proved for subtrochanteric fractures. Nevertheless, postoperative management of these patients has not changed, with high rates of protected weight-bearing after intramedullary nailing.

The purpose of this study is to determine the mechanical complications of immediate postoperative full weigh-bearing for subtrochanteric femur fractures in elderly patients treated with a cephalomedullary nail.

Methods

We performed a retrospective case series study from patients treated with a cephalomedullary nail for subtrochanteric fractures (AO/OTA 31A.3 and 32A-32C) over a nine-year period.

Patients in the immediate full weight-bearing (IFWB) group received orders for immediate full weight bear as tolerated on postoperative 48 h. Patients in the non- or limited- weight-bearing (NLWB) group received orders not to full weight bear in the immediate postoperative.

Results

There were five (2.7%) cases of implant failure including four cutouts and one nail breakage that needed a reoperation. Of them, one (2.2%) followed the NLWB protocol and four (2.9%) followed the IFWB protocol.

Mean length of stay was 7.9 days (median 8, range 3–21) in the NLWB group and 10.7 days (median 8, range 2–60) in the IWBAT group. The NLWB group observed a 2.8-day shorter postoperative length of stay when compared to the IFWB, but the median remained equal.

Conclusion

This study suggests that geriatric patients with subtrochanteric fractures treated by intramedullary nailing and in which a good fracture reduction was achieved, may be able to tolerate immediate postoperative full weight-bearing, not increasing reoperation rates due to implant failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and material were obtained from hospital records in the four hospitals that participated in this study: Caomplejo Asistencial Universitario de Palencia, Hospital Clínico San Carlos, Hospital Universitario Infanta Leonor and Hospital Universitario Clínico de Valladolid.

References

  1. Mingo-Robinet J, Torres-Torres M, Moreno-Barrero M, Alonso JA, García-González S (2015) Minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage cables for subtrochanteric femur fractures in the elderly: surgical technique and results. Injury 46(6):1036–1041. https://doi.org/10.1016/j.injury.2015.01.019

    Article  PubMed  Google Scholar 

  2. Nieves JW, Bilezikian JP, Lane JM, Einhorn TA, Wang Y, Steinbuch F et al (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21:399–408. https://doi.org/10.1007/s00198-009-0962-6

    Article  CAS  PubMed  Google Scholar 

  3. Ekstrom W, Nemeth G, Samnegard E, Dalen N, Tidermark J (2009) Quality of life after a subtrochanteric fracture: a prospective cohort study on 87 elderly patients. Injury 40:371–376. https://doi.org/10.1016/j.injury.2008.09.010

    Article  PubMed  Google Scholar 

  4. Bedi A, Le Toan T (2004) Subtrochanteric femur fractures. Orthop Clin N Am 35(4):473–483. https://doi.org/10.1016/j.ocl.2004.05.006

    Article  Google Scholar 

  5. Waddell JP (1979) Subtrochanteric fractures of the femur: a review of 130 patients. J Trauma 19:582–592. https://doi.org/10.1097/00005373-197908000-00006

    Article  CAS  PubMed  Google Scholar 

  6. Boyd HB, Lipinski SW (1957) Nonunion of trochanteric and subtrochanteric fractures. Surg Gynecol Obstet 104:463–470

    CAS  PubMed  Google Scholar 

  7. Erez O, Dougherty PJ (2012) Early complications associated with cephalomedullary nail for intertrochanteric hip fractures. J Trauma Acute Care Surg 72:E101–E105. https://doi.org/10.1097/TA.0b013e31821c2ef2

    Article  PubMed  Google Scholar 

  8. Cunningham BP, Ali A, Parikh HR, Heare A, Blaschke B, Zaman S et al (2021) Immediate weight bearing as tolerated (WBAT) correlates with a decreased length of stay post intramedullary fixation for subtrochanteric fractures: a multicenter retrospective cohort study. Eur J Orthop Surg Traumatol 31(2):235–243. https://doi.org/10.1007/s00590-020-02759-3

    Article  PubMed  Google Scholar 

  9. Wang J, Li H, Jia H, Ma X (2020) Intramedullary versus extramedullary fixation in the treatment of subtrochanteric femur fractures: a comprehensive systematic review and meta-analysis. Acta Orthop Traumatol Turc 54(6):639–646. https://doi.org/10.5152/j.aott.2020.19216

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xie H, Xie L, Wang J, Chen C, Zhang C, Zheng W (2019) Intramedullary versus extramedullary fixation for the treatment of subtrochanteric fracture: a systematic review and meta-analysis. Int J Surg 63:43–57. https://doi.org/10.1016/j.ijsu.2019.01.021

    Article  PubMed  Google Scholar 

  11. Wiss DA, Brien WW (1992) Subtrochanteric fractures of the femur: results of treatment by interlocking nailing. Clin Orthop Relat Res 283:231–236. https://doi.org/10.1097/00003086-199210000-00032

    Article  Google Scholar 

  12. Beingessner DM, Scolaro JA, Orec RJ, Nork SE, Barei DP (2013) Open reduction and intramedullary stabilisation of subtrochanteric femur fractures: a retrospective study of 56 cases. Injury 44:1910–1915. https://doi.org/10.1016/j.injury.2013.08.013

    Article  PubMed  Google Scholar 

  13. Afsari A, Liporace F, Lindvall E, Infante A Jr, Sagi HC, Haidukewych GJ (2010) Clamp-assisted reduction of high subtrochanteric fractures of the femur. J Bone Jt Surg 92:217–225. https://doi.org/10.2106/JBJS.J.00158

    Article  Google Scholar 

  14. Celebi L, Can M, Muratli HH, Yagmurlu MF, Yuksel HY, Bicimoğlu A (2006) Indirect reduction and biological internal fxation of comminuted subtrochanteric fractures of the femur. Injury 37:740–750. https://doi.org/10.1016/j.injury.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  15. Kellam JF, Meinberg EG, Agel J, Karam MD, Roberts CS (2018) Introduction: fracture and dislocation classification compendium—2018 international comprehensive classification of fractures and dislocations committee. J Orthop Trauma 32:1–10

    Google Scholar 

  16. Seinsheimer F (1978) Subtrochanteric fractures of the femur. J Bone Joint Surg 60(3):300–306

    Article  CAS  PubMed  Google Scholar 

  17. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg 77(7):1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  18. Firoozabadi R, Harnden E, Krieg JC (2015) Immediate weightbearing after ankle fracture fxation. Adv Orthop. https://doi.org/10.1155/2015/491976

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smeeing DPJ, Houwert RM, Briet JP, Kelder JC, Segers MJM, Verleisdonk EJMM et al (2015) Weight-bearing and mobilization in the postoperative care of ankle fractures: a systematic review and meta-analysis of randomized controlled trials and cohort studies. PLoS ONE 10(2):e0118320. https://doi.org/10.1371/journal.pone.0118320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Egol KA, Dolan R, Koval KJ (2015) Functional outcome of surgery for fractures of the ankle. A prospective, randomised comparison of management in a cast or a functional brace. J Bone Joint Surg Br 82:246–249

    Article  Google Scholar 

  21. Simanski CJP, Maegele MG, Lefering R, Lehnen DM, Kawel N, Riess P et al (2006) Functional treatment and early weightbearing after an ankle fracture. J Orthop Trauma 20:108–114. https://doi.org/10.1097/01.bot.0000197701.96954.8c

    Article  PubMed  Google Scholar 

  22. Greenhill DA, Poorman M, Pinkowski C, Ramsey FV, Haydel C (2017) Does weight-bearing assignment after intramedullary nail placement alter healing of tibial shaft fractures? Orthop Traumatol Surg Res 103–1:111–114. https://doi.org/10.1016/j.otsr.2016.09.019

    Article  Google Scholar 

  23. Brumback RJ, Toal TR, Murphy-Zane MS, Novak VP, Belkoff SM (1999) Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail. J Bone Joint Surg Am 81:1538–1544. https://doi.org/10.2106/00004623-199911000-00005

    Article  CAS  PubMed  Google Scholar 

  24. Smith WR, Stoneback JW, Morgan SJ, Stahel PF (2016) Is immediate weight bearing safe for periprosthetic distal femur fractures treated by locked plating? A feasibility study in 52 consecutive patients. Patient Saf Surg 10:26. https://doi.org/10.1186/s13037-016-0114-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koval KJ, Chen AL, Aharonof GB, Egol KA, Zuckermann JD (2004) Clinical pathway for hip fractures in the elderly: the hospital for joint diseases experience. Clin Orthop Relat Res 425:72–78. https://doi.org/10.1097/01.blo.0000132266.59787.d2

    Article  Google Scholar 

  26. Koval KJ, Friend KD, Aharonof GB, Zukerman JD (1996) Weight bearing after hip fracture: a prospective series of 596 geriatric hip fracture patients. J Orthop Trauma 10:526–530. https://doi.org/10.1097/00005131-199611000-00003

    Article  CAS  PubMed  Google Scholar 

  27. Ottesen TD, McLynn RP, Galivanche AR, Bagi PS, Zogg CK, Rubin LE et al (2018) Increased complications in geriatric patients with a fracture of the hip whose postoperative weight-bearing is restricted: an analysis of 4918 patients. Bone Joint J 100-B(10):1377–1384. https://doi.org/10.1302/0301-620X.100B10.BJJ-2018-0489.R1

    Article  CAS  PubMed  Google Scholar 

  28. Warren J, Sundaram K, Anis H, McLaughlin J, Patterson B, Higuera CA et al (2019) The association between weight-bearing status and early complications in hip fractures. Eur J Orthop Surg Traumatol 29(7):1419–1427. https://doi.org/10.1007/s00590-019-02453-z

    Article  PubMed  Google Scholar 

  29. Riehl JT, Koval KJ, Langford JR, Munro MW, Kupiszewski H (2014) Intramedullary nailing of subtrochanteric fractures:does malreduction matter? Bull Hosp Jt Dis 72:159–163

    Google Scholar 

  30. Miedel R, Törnkvist H, Ponzer S, Söderqvist A, Tidermark J (2011) Musculoskeletal function and quality of life in elderly patients after a subtrochanteric femoral fracture treated with a cephalomedullary nail. J Orthop Trauma 25(4):208–213. https://doi.org/10.1097/BOT.0b013e3181eaaf52

    Article  PubMed  Google Scholar 

  31. Robinson CM, Houshian S, Khan LAK (2005) Trochanteric-Entry long cephalomedullary nailing of subtrochanteric fractures caused by low-energy trauma. J Bone Jt Surg 87:2217. https://doi.org/10.2106/JBJS.D.02898

    Article  Google Scholar 

  32. Zhou Z-B, Chen S, Gao Y-S, Sun Y-Q, Zhang C-Q, Jiang Y (2015) Subtrochanteric femur fracture treated by intramedullary fxation. Chinese J Traumatol 18:336–341. https://doi.org/10.1016/j.cjtee.2015.11.011

    Article  Google Scholar 

  33. French BG, Tornetta P (1998) Use of an interlocked cephalomedullary nail for subtrochanteric fracture stabilization. Clin Orthop Relat Res 348:95–100. https://doi.org/10.1097/00003086-199803000-00016

    Article  Google Scholar 

  34. Westerman RW, Hull P, Hendry RG, Cooper J (2008) The physiological cost of restricted weight bearing. Injury 39:725–727. https://doi.org/10.1016/j.injury.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  35. Dehghan N, McKee MD, Jenkinson RJ, Schemitsch EH, Stas V, Nauth A et al (2016) Early weightbearing and range of motion versus non-weightbearing and immobilization after open reduction and internal fixation of unstable ankle fractures. J Orthop Trauma 30(7):345–352. https://doi.org/10.1097/BOT.0000000000000572

    Article  PubMed  Google Scholar 

  36. Arazi M, Oğün TC, Oktar MN, Memik R, Kutlu A (2001) Early weight-bearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure? J Trauma 50:711–716. https://doi.org/10.1097/00005373-200104000-00019

    Article  CAS  PubMed  Google Scholar 

  37. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38:S3–S10. https://doi.org/10.1016/j.injury.2007.02.005

    Article  PubMed  Google Scholar 

  38. Kammerlander C, Pfeufer D, Lisitano LA, Mehaffey S, Böcker W, Neuerburg C (2018) Inability of older adult patients with hip fracture to maintain postoperative weight-bearing restrictions. J Bone Joint Surg Am 100(11):936–941. https://doi.org/10.2106/JBJS.17.01222

    Article  PubMed  Google Scholar 

  39. Cunningham BP, Zaman SU, Roberts J, Ortega G, Only AJ, Rhorer AS et al (2020) Weight bearing protocols following subtrochanteric fracture fixation with intramedullary implants, a retrospective cohort study. Int J Orthop 7(6):1390–1396. https://doi.org/10.1007/s00590-020-02759-3

    Article  Google Scholar 

  40. Van Doorn R, Stapert JWJL (2000) The long gamma nail in the treatment of 329 subtrochanteric fractures with major extension into the femoral shaft. Eur J Surg 166(3):240–246. https://doi.org/10.1080/110241500750009366

    Article  PubMed  Google Scholar 

  41. DeRogatis MJ, Kanakamedala AC, Egol KA (2020) Management of subtrochanteric femoral fracture nonunions. JBJS Rev 8(6):e19. https://doi.org/10.2106/JBJS.RVW.19.00143

    Article  Google Scholar 

  42. Mingo-Robinet J, Gonzalez-Alonso C, Alonso Del Olmo JA (2021) Fluoroscopic landmarks to recognize iatrogenic varus displacement (wedge effect) during cephalomedullary nailing of intertrochanteric fractures. Injury 52:S47–S53. https://doi.org/10.1016/j.injury.2021.03.065

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Iñigo SanJosé-Pardo, Juan Mingo-Robinet, José Antonio Valle-Cruz, Susana Donadeu-Sánchez, Héctor J. Aguado, Sergio País-Ortega, Javier Montoya-Adarraga and Ángel Díez-Rodríguez. The first draft of the manuscript was written by Iñigo SanJosé-Pardo and reviewed by Juan Mingo-Robinet, and all authors commented on previous versions of the manuscript. Juan Antonio Alonso Del Olmo contributed to overall language and critical review of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iñigo SanJosé-Pardo.

Ethics declarations

Conflict of interest

Iñigo SanJosé-Pardo, Juan Mingo-Robinet, José Antonio Valle-Cruz, Susana Donadeu-Sánchez, Héctor J. Aguado, Sergio País-Ortega, Javier Montoya-Adarraga and Ángel Díez-Rodríguez declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Code availability (software application or custom code) 

Not applicable. 

Consent for publication 

Not applicable. 

Informed consent

Not applicable. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SanJosé-Pardo, I., Valle-Cruz, J.A., Donadeu-Sánchez, S. et al. Is immediate weight bearing safe for subtrochanteric femur fractures in elderly patients treated by cephalomedullary nailing? A multicentric study in one hundred eighty-two patients. Eur J Orthop Surg Traumatol (2024). https://doi.org/10.1007/s00590-024-03897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00590-024-03897-8

Keywords

Navigation