Skip to main content
Log in

Surface morphology of osteochondral grafts harvested from femoral condyles with free-hand technique: a cadaveric study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this cadaver study was to examine the surface morphology of the osteochondral grafts harvested from the femoral condyles using the free-hand graft harvesting technique.

Materials and methods

One hundred osteochondral grafts were harvested with 6.5 mm chisels at ten different donor sites using the free-hand technique in five paired knee specimens (Mean age: 56.4 years). The cartilage and subchondral bone surface angles were measured through multiplanar reconstruction computerized tomography examination. The cartilage thickness was measured with a MicroScribe G2X digitizer with an accuracy of 0.02 mm. An acceptable congruity could be obtained when these plugs were transferred to a perpendicular socket (articular step-off of less than 1 mm and 0.5 mm) was evaluated.

Results

Four plugs were damaged or broken during harvesting due to technical difficulties; thus remaining 96 plugs were analyzed. The cartilage thickness varied between 1.36 mm and 3.26 mm across the donor sites. The cartilage was the thinnest in the medial intercondylar notch and thickest in the lateral supracondylar notch. Twenty of ninety-six plugs (20.8%) had unacceptable cartilage surface inclination according to the > 0.5 mm protrusion criteria. Of these plugs, 14 were harvested from the lateral intercondylar notch, whereas five of 96 plugs (5.2%) had unacceptable cartilage surface inclination according to the > 1 mm protrusion criteria. Of these plugs, all were harvested from the lateral intercondylar notch.

Conclusions

High rates of unacceptable plugs (up to 100%) might be harvested from the lateral intercondylar notch. In large chondral lesions that require multiple plugs, lateral and medial supracondylar ridges were the best donor sites for perpendicular plug harvesting, whereas lateral intercondylar notch should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting this study is available from the corresponding author upon request.

References

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460. https://doi.org/10.1016/s0749-8063(97)90124-9

    Article  CAS  PubMed  Google Scholar 

  2. Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14(3):177–182. https://doi.org/10.1016/j.knee.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  4. Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, Rodeo SA (2014) Restoration of articular cartilage. J Bone Jt Surg Am 96(4):336–344. https://doi.org/10.2106/JBJS.L.01329

    Article  Google Scholar 

  5. Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Jt Surg Am 92(4):994–1009. https://doi.org/10.2106/JBJS.I.00895

    Article  Google Scholar 

  6. Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects: a preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267. https://doi.org/10.1007/s001670050061

    Article  CAS  PubMed  Google Scholar 

  7. Zamborsky R, Danisovic L (2020) Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy 36(3):845–858. https://doi.org/10.1016/j.arthro.2019.11.096

    Article  PubMed  Google Scholar 

  8. Kizaki K, El-Khechen HA, Yamashita F, Duong A, Simunovic N, Musahl V, Ayeni OR (2021) Arthroscopic versus open osteochondral autograft transplantation (mosaicplasty) for cartilage damage of the knee: a systematic review. J Knee Surg 34(1):94–107. https://doi.org/10.1055/s-0039-1692999

    Article  PubMed  Google Scholar 

  9. Paul J, Sagstetter A, Kriner M, Imhoff AB, Spang J, Hinterwimmer S (2009) Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am 91(7):1683–1688. https://doi.org/10.2106/JBJS.H.00429

    Article  CAS  PubMed  Google Scholar 

  10. Keeling JJ, Gwinn DE, McGuigan FX (2009) A comparison of open versus arthroscopic harvesting of osteochondral autografts. Knee 16(6):458–462. https://doi.org/10.1016/j.knee.2009.02.010

    Article  PubMed  Google Scholar 

  11. Latt LD, Glisson RR, Montijo HE, Usuelli FG, Easley ME (2011) Effect of graft height mismatch on contact pressures with osteochondral grafting of the talus. Am J Sports Med 39(12):2662–2669. https://doi.org/10.1177/0363546511422987

    Article  PubMed  Google Scholar 

  12. Koh JL, Kowalski A, Lautenschlager E (2006) The effect of angled osteochondral grafting on contact pressure: a biomechanical study. Am J Sports Med 34(1):116–119. https://doi.org/10.1177/0363546505281236

    Article  PubMed  Google Scholar 

  13. Kock NB, Smolders JM, van Susante JL, Buma P, van Kampen A, Verdonschot N (2008) A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect. Knee Surg Sports Traumatol Arthrosc 16(5):461–468. https://doi.org/10.1007/s00167-008-0494-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L (2004) Autologous osteochondral mosaicplasty: surgical technique. J Bone Joint Surg Am 86(Suppl 1):65–72

    Article  PubMed  Google Scholar 

  15. Epstein DM, Choung E, Ashraf I, Greenspan D, Klein D, McHugh M, Nicholas S (2012) Comparison of mini-open versus arthroscopic harvesting of osteochondral autografts in the knee: a cadaveric study. Arthroscopy 28(12):1867–1872. https://doi.org/10.1016/j.arthro.2012.06.014

    Article  PubMed  Google Scholar 

  16. Di Benedetto P, Citak M, Kendoff D, O’Loughlin PF, Suero EM, Pearle AD, Koulalis D (2012) Arthroscopic mosaicplasty for osteochondral lesions of the knee: computer-assisted navigation versus freehand technique. Arthroscopy 28(9):1290–1296. https://doi.org/10.1016/j.arthro.2012.02.013

    Article  PubMed  Google Scholar 

  17. Koulalis D, Di Benedetto P, Citak M, O’Loughlin P, Pearle AD, Kendoff DO (2009) Comparative study of navigated versus freehand osteochondral graft transplantation of the knee. Am J Sports Med 37(4):803–807. https://doi.org/10.1177/0363546508328111

    Article  PubMed  Google Scholar 

  18. Koulalis D, Stavropoulos NA, Citak M, Di Benedetto P, O’Loughlin P, Pearle AD, Kendoff D (2015) Open versus arthroscopic mosaicplasty of the knee: a cadaveric assessment of accuracy of graft placement using navigation. Arthroscopy 31(9):1772–1776. https://doi.org/10.1016/j.arthro.2015.03.016

    Article  PubMed  Google Scholar 

  19. Diduch DR, Chhabra A, Blessey P, Miller MD (2003) Osteochondral autograft plug transfer: achieving perpendicularity. J Knee Surg 16(1):17–20

    PubMed  Google Scholar 

  20. Sherman SL, Thyssen E, Nuelle CW (2017) Osteochondral autologous transplantation. Clin Sports Med 36(3):489–500. https://doi.org/10.1016/j.csm.2017.02.006

    Article  PubMed  Google Scholar 

  21. Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC (2001) Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 29(2):201–206. https://doi.org/10.1177/03635465010290021401

    Article  CAS  PubMed  Google Scholar 

  22. Garretson RB 3rd, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ (2004) Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med 32(4):967–974. https://doi.org/10.1177/0363546503261706

    Article  PubMed  Google Scholar 

  23. Pearce SG, Hurtig MB, Clarnette R, Kalra M, Cowan B, Miniaci A (2001) An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy 17(1):50–55. https://doi.org/10.1053/jars.2001.19966

    Article  CAS  PubMed  Google Scholar 

  24. Miyamoto W, Yamamoto S, Kii R, Uchio Y (2009) Oblique osteochondral plugs transplantation technique for osteochondritis dissecans of the elbow joint. Knee Surg Sports Traumatol Arthrosc 17(2):204–208. https://doi.org/10.1007/s00167-008-0636-5

    Article  PubMed  Google Scholar 

  25. Nishitani K, Nakagawa Y, Nakamura S, Mukai S, Kuriyama S, Matsuda S (2018) Resection-induced leveling of elevated plug cartilage in osteochondral autologous transplantation of the knee achieves acceptable clinical results. Am J Sports Med 46(3):617–622. https://doi.org/10.1177/0363546517739614

    Article  PubMed  Google Scholar 

  26. Sebastyan S, Kunz M, Stewart AJ, Bardana DD (2016) Image-guided techniques improve accuracy of mosaic arthroplasty. Int J Comput Assist Radiol Surg 11(2):261–299. https://doi.org/10.1007/s11548-015-1249-3

    Article  PubMed  Google Scholar 

  27. Kunz M, Devlin SM, Hurtig MB, Waldman SD, Rudan JF, Bardana DD, Stewart AJ (2013) Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries: An Animal Trial. Cartilage 4(2):153–164. https://doi.org/10.1177/1947603512470683

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funds have been received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: ET, OK, AC, Acquisition of data: MO, OFK, MS, OK Analysis and interpretation of data: OK, AC, ET, OFK, Drafting of the manuscript: ET, OK, AC, MO, MS, Critical revision: OK, AC, ET, OFK, MS, MO (Initials of authors’ names).

Corresponding author

Correspondence to Ozkan Kose.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Ethical approval

Institutional Review Board approved the study protocol (2020.331.17/27).

Informed consent

Written informed consent was waived by the IRB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasatan, E., Kose, O., Cakar, A. et al. Surface morphology of osteochondral grafts harvested from femoral condyles with free-hand technique: a cadaveric study. Eur J Orthop Surg Traumatol 34, 853–862 (2024). https://doi.org/10.1007/s00590-023-03731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-023-03731-7

Keywords

Navigation