Skip to main content

Advertisement

Log in

Minimally invasive opening wedge tibia outpatient osteotomy, using screw-to-plate locking technique and a calcium phosphate cement

  • Expert's Opinion • KNEE - BIOMATERIALS
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Medial knee osteoarthritis on angular varus deformity of a lower limb is very common. Open-wedge high tibial osteotomy is a treatment of choice if cartilage is not excessively worn (Allback 1 or 2). The technique based on a plate fixation and the bone defect filled with calcium phosphate cement is thoroughly described. Data at 1, 3, 6 months and 1 year of a 19 cases continuous and prospective series are collected and analysed. Mean age at the time of operation was 55 years. The average preoperative varus deformity was 5° and corrected to an average postoperative valgus of 4° (range 3°–6°). Each control includes the collection of eventual complications, the measurement of health status (quality of life and functional scores) and antero-posterior and lateral X-rays. All osteotomies were considered healed at 6 weeks without any correction loss except one, probably result of a technical error. There was no difference in clinical and functional results between the group and the literature, but the final result occurred earlier in the treatment when the bone defect was filled with either calcium phosphate cement. Faster recovery involved no specific complication and enabled outpatient treatment in a majority of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 69(3):332–354

    Article  PubMed  CAS  Google Scholar 

  2. Wright JM, Crockett HC, Slawski DP, Madsen MW, Windsor RE (2005) High tibial osteotomy. J Am Acad Orthop Surg 13(4):279–289

    Article  PubMed  Google Scholar 

  3. Flecher X, Parratte S, Aubaniac JM, Argenson JN (2006) A 12–28-years followup study of closing wedge high tibial osteotomy. Clin Orthop Relat Res 452:91–96

    Article  PubMed  Google Scholar 

  4. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H (2008) The long-term outcome of high tibial osteotomy—a ten- to 20-year follow-up. J Bone Joint Surg 90B(5):592–596

    Article  Google Scholar 

  5. Spahn G, Klinger HM, Harth p et al (2012) Cartilage regeneration after high tibial osteotomy. Results of an arthroscopic study. Z Orthop Unf 150(3):272–279

    Article  CAS  Google Scholar 

  6. Jung WH, Takeuchi R, Chun CW et al (2014) Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 30(1):72–79

    Article  PubMed  Google Scholar 

  7. Giuseffi SA, Replogle WH, Shelton WR (2015) Opening-wedge high tibial osteotomy: review of 100 consecutive cases. Arthroscopy 31(11):2128–2137

    Article  PubMed  Google Scholar 

  8. Ahlbäck S (1968) Osteoarthrosis of the knee: a radiographic investigation. Acta Radiol Stockh Suppl 277:7–72

    Google Scholar 

  9. Odenbring S, Berggren AM, Peil L (1993) Roentgenographic assessment of the hip–knee–ankle axis in medial gonarthrosis. A study of reproducibility. Clin Orthop Relat Res 289:195–196

    Google Scholar 

  10. Dugdale TW, Noyes FR, Styer D (1992) Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 274:248–264

    Google Scholar 

  11. Bajammal SS et al (2008) The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am 90(6):1186–1196

    Article  PubMed  Google Scholar 

  12. Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(Suppl 1):S86–S94

    Article  PubMed  Google Scholar 

  13. Johal HS, Buckley RE, Le IL, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (alpha-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma 67(4):875–882

    Article  PubMed  CAS  Google Scholar 

  14. Thawrani D, Thai CC, Welch RD, Copley L, Johnston CE (2009) Successful treatment of unicameral bone cyst by single percutaneous injection of alpha-BSM. J Pediatr Orthop 29(5):511–517

    Article  PubMed  Google Scholar 

  15. Mattsson P, Larsson S (2006) Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patients. Acta Orthop 77:251–256

    Article  PubMed  Google Scholar 

  16. Johal HS, Buckley RE, Le IL, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (alpha-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma 67:875–882

    Article  PubMed  CAS  Google Scholar 

  17. Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty month mean follow-up. J Orthop Trauma 16(3):143–149

    Article  PubMed  CAS  Google Scholar 

  18. Horstmann WG, Verheyen CC, Leemans R (2003) An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 34(2):141–144

    Article  PubMed  CAS  Google Scholar 

  19. Keating JF, Hajducka CL, Harper J (2003) Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. A pilot study. J Bone Joint Surg Br 85(1):68–73

    Article  PubMed  CAS  Google Scholar 

  20. Elsner A, Jubel A, Prokop A, Koebke J, Rehm KE, Andermahr J (2005) Augmentation of intraarticular calcaneal fractures with injectable calcium phosphate cement: densitometry, histology, and functional outcome of 18 patients. J Foot Ankle Surg 44(5):390–395

    Article  PubMed  Google Scholar 

  21. Bloemers FW, Stahl JP, Sarkar MR, Linhart W, Rueckert U, Burhart U, Wippermann BW (2004) Bone substitution and augmentation in trauma surgery with a resorbable calcium phosphate bone cement. Eur J Trauma 30:17–22

    Article  Google Scholar 

  22. Frayssinet P, Schwartz C (1998) Histological study of calcium phosphate ceramics implanted in human long bones. In: Legros RZ, Legros JP (eds) Bioceramics, vol 11. World Scientific Publishing Co Ltd, Singapore, pp 353–357

    Google Scholar 

  23. Frayssinet P, Schwartz C, Beya B et al (1999) Biology of the calcium phosphate integration in human long bones. Eur J Orthop Surg Traumatol 9:167–170

    Article  Google Scholar 

  24. Sarkar MR, Wachter N, Patka P, Kinzl L (2001) First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone. J Biomed Mater Res 58(3):329–334

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Schwartz.

Ethics declarations

Conflict of interest

The author has a contract as medical advisor to Graftys SA, 13 854 Aix en Provence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, C. Minimally invasive opening wedge tibia outpatient osteotomy, using screw-to-plate locking technique and a calcium phosphate cement. Eur J Orthop Surg Traumatol 28, 799–809 (2018). https://doi.org/10.1007/s00590-017-2109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-2109-3

Keywords

Navigation