Skip to main content

Advertisement

Log in

MRI-based vertebral bone quality score compared to quantitative computed tomography bone mineral density in patients undergoing cervical spinal surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The vertebral bone quality (VBQ) score based on magnetic resonance imaging (MRI) was introduced as a bone quality marker in the lumbar spine. Prior studies showed that it could be utilized as a predictor of osteoporotic fracture or complications after instrumented spine surgery. The objective of this study was to evaluate the correlation between VBQ scores and bone mineral density (BMD) measured by quantitative computer tomography (QCT) in the cervical spine.

Methods

Preoperative cervical CT and sagittal T1-weighted MRIs from patients undergoing ACDF were retrospectively reviewed and included. The VBQ score in each cervical level was calculated by dividing the signal intensity of the vertebral body by the signal intensity of the cerebrospinal fluid on midsagittal T1-weighted MRI images and correlated with QCT measurements of the C2–T1 vertebral bodies. A total of 102 patients (37.3% female) were included.

Results

VBQ values of C2–T1 vertebrae strongly correlated with each other. C2 showed the highest VBQ value [Median (range) 2.33 (1.33, 4.23)] and T1 showed the lowest VBQ value [Median (range) 1.64 (0.81, 3.88)]. There was significant weak to moderate negative correlations between and VBQ Scores for all levels [C2: p < 0.001; C3: p < 0.001; C4: p < 0.001; C5: p < 0.004; C6: p < 0.001; C7: p < 0.025; T1: p < 0.001].

Conclusion

Our results indicate that cervical VBQ scores may be insufficient in the estimation of BMDs, which might limit their clinical application. Additional studies are recommended to determine the utility of VBQ and QCT BMD to evaluate their potential use as bone status markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fraser JF, Härtl R (2007) Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine 6:298–303. https://doi.org/10.3171/spi.2007.6.4.2

    Article  PubMed  Google Scholar 

  2. Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617. https://doi.org/10.3171/jns.1958.15.6.0602

    Article  CAS  PubMed  Google Scholar 

  3. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. JBJS 40:607–624

    Article  Google Scholar 

  4. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17. https://doi.org/10.1148/radiol.12110462

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424. https://doi.org/10.1016/j.ejrad.2009.04.074

    Article  PubMed  Google Scholar 

  6. Salzmann SN, Shirahata T, Yang J et al (2019) Regional bone mineral density differences measured by quantitative computed tomography: does the standard clinically used L1–L2 average correlate with the entire lumbosacral spine? Spine J 19:695–702. https://doi.org/10.1016/j.spinee.2018.10.007

    Article  PubMed  Google Scholar 

  7. Pennington Z, Ehresman J, Lubelski D et al (2021) Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J 21:321–331. https://doi.org/10.1016/j.spinee.2020.08.020

    Article  PubMed  Google Scholar 

  8. Ehresman J, Pennington Z, Schilling A et al (2020) Novel MRI-based score for assessment of bone density in operative spine patients. Spine J 20:556–562. https://doi.org/10.1016/j.spinee.2019.10.018

    Article  PubMed  Google Scholar 

  9. Bandirali M, Di Leo G, Papini GDE et al (2015) A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol 25:2951–2959. https://doi.org/10.1007/s00330-015-3699-y

    Article  PubMed  Google Scholar 

  10. Ehresman J, Schilling A, Yang X et al (2021) Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J 21:20–27. https://doi.org/10.1016/j.spinee.2020.05.540

    Article  PubMed  Google Scholar 

  11. Ehresman J, Ahmed AK, Lubelski D et al (2020) Vertebral bone quality score and postoperative lumbar lordosis associated with need for reoperation after lumbar fusion. World Neurosurg 140:e247–e252. https://doi.org/10.1016/j.wneu.2020.05.020

    Article  PubMed  Google Scholar 

  12. Salzmann SN, Okano I, Ortiz Miller C et al (2020) Regional bone mineral density differences measured by quantitative computed tomography in patients undergoing anterior cervical spine surgery. Spine J 20:1056–1064. https://doi.org/10.1016/j.spinee.2020.02.011

    Article  PubMed  Google Scholar 

  13. Brown JK, Timm W, Bodeen G et al (2017) Asynchronously calibrated quantitative bone densitometry. J Clin Densitom 20:216–225. https://doi.org/10.1016/j.jocd.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Shepherd JA, Schousboe JT, Broy SB, et al (2015) Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom 18:274–286. https://doi.org/10.1016/j.jocd.2015.06.013

  15. Wang L, Su Y, Wang Q et al (2017) Validation of asynchronous quantitative bone densitometry of the spine: accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci Rep 7:6284. https://doi.org/10.1038/s41598-017-06608-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brett AD, Brown JK (2015) Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans. J Orthop Translat 3:178–184. https://doi.org/10.1016/j.jot.2015.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ehresman J, Schilling A, Pennington Z et al (2019) A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J Neurosurg Spine. https://doi.org/10.3171/2019.9.SPINE19954

    Article  PubMed  Google Scholar 

  18. Halvorson TL, Kelley LA, Thomas KA, et al (1994) Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976) 19:2415–2420. https://doi.org/10.1097/00007632-199411000-00008

  19. Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine (Phila Pa 1976) 16:1335–1341. https://doi.org/10.1097/00007632-199111000-00015

  20. Kim DK, Kim JY, Kim DY et al (2017) Risk factors of proximal junctional kyphosis after multilevel fusion surgery: more than 2 years follow-up data. J Korean Neurosurg Soc 60:174–180. https://doi.org/10.3340/jkns.2016.0707.014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ren B, Gao W, An J et al (2020) Risk factors of cage nonunion after anterior cervical discectomy and fusion. Medicine (Baltimore). https://doi.org/10.1097/MD.0000000000019550

    Article  PubMed  Google Scholar 

  22. Opsenak R, Hanko M, Snopko P et al (2019) Subsidence of anchored cage after anterior cervical discectomy. Bratisl Lek Listy 120:356–361. https://doi.org/10.4149/BLL_2019_058

    Article  CAS  PubMed  Google Scholar 

  23. Liu B, Liu X, Chen Y et al (2019) Clinical effect observation of intravenous application of zoledronic acid in patients with cervical spondylosis and osteoporosis after anterior cervical discectomy and fusion: A randomized controlled study. J Orthop Surg (Hong Kong) 27:2309499019847028. https://doi.org/10.1177/2309499019847028

    Article  PubMed  Google Scholar 

  24. Wang M, Meng X, Li Y et al (2016) Effects of anti-osteoporosis treatment in the elderly with anterior cervical discectomy and fusion. Acta Orthop Traumatol Turc 50:186–190. https://doi.org/10.3944/AOTT.2015.15.0073

    Article  PubMed  Google Scholar 

  25. Hitchon PW, Abode-Iyamah K, Dahdaleh NS, et al (2016) Nonoperative management in neurologically intact thoracolumbar burst fractures: clinical and radiographic outcomes. Spine (Phila Pa 1976) 41:483–489. https://doi.org/10.1097/BRS.0000000000001253

  26. Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN (2003) Failure of human cervical endplates: a cadaveric experimental model. Spine (Phila Pa 1976) 28:2204–2208. https://doi.org/10.1097/01.BRS.0000084881.11695.50

  27. Ordway NR, Lu Y-M, Zhang X et al (2007) Correlation of cervical endplate strength with CT measured subchondral bone density. Eur Spine J 16:2104–2109. https://doi.org/10.1007/s00586-007-0482-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Budoff MJ, Khairallah W, Li D et al (2012) Trabecular bone mineral density measurement using thoracic and lumbar quantitative computed tomography. Acad Radiol 19:179–183. https://doi.org/10.1016/j.acra.2011.10.006

    Article  PubMed  Google Scholar 

  29. Wong M, Papa A, Lang T et al (2005) Validation of thoracic quantitative computed tomography as a method to measure bone mineral density. Calcif Tissue Int 76:7–10. https://doi.org/10.1007/s00223-004-0020-5

    Article  PubMed  Google Scholar 

  30. Schneider DL, Bettencourt R, Barrett-Connor E (2006) Clinical utility of spine bone density in elderly women. J Clin Densitom 9:255–260. https://doi.org/10.1016/j.jocd.2006.04.116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morgan SL, Prater GL (2017) Quality in dual-energy X-ray absorptiometry scans. Bone 104:13–28. https://doi.org/10.1016/j.bone.2017.01.033

    Article  CAS  PubMed  Google Scholar 

  32. Korovessis P, Konstantinou D, Piperos G et al (1994) Spinal bone mineral density changes following halo vest immobilization for cervical trauma. Eur Spine J 3:206–208. https://doi.org/10.1007/BF02221593

    Article  CAS  PubMed  Google Scholar 

  33. Yoganandan N, Pintar FA, Stemper BD et al (2006) Trabecular bone density of male human cervical and lumbar vertebrae. Bone 39:336–344. https://doi.org/10.1016/j.bone.2006.01.160

    Article  PubMed  Google Scholar 

  34. Link TM, Lang TF (2014) Axial QCT: clinical applications and new developments. J Clin Densitom 17:438–448. https://doi.org/10.1016/j.jocd.2014.04.119

    Article  PubMed  Google Scholar 

  35. Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162. https://doi.org/10.1016/j.jocd.2007.12.010

    Article  PubMed  Google Scholar 

  36. Pauwels R, Jacobs R, Singer SR, Mupparapu M (2015) CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol 44:20140238. https://doi.org/10.1259/dmfr.20140238

    Article  CAS  PubMed  Google Scholar 

  37. Schuit SCE, van der Klift M, Weel AE, a. M, et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202. https://doi.org/10.1016/j.bone.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  38. Anderst WJ, Thorhauer ED, Lee JY et al (2011) Cervical spine bone mineral density as a function of vertebral level and anatomic location. Spine J 11:659–667. https://doi.org/10.1016/j.spinee.2011.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Curylo LJ, Lindsey RW, Doherty BJ, LeBlanc A (1996) Segmental variations of bone mineral density in the cervical spine. Spine (Phila Pa 1976) 21:319–322. https://doi.org/10.1097/00007632-199602010-00013

  40. Weishaupt D, Schweitzer ME, DiCuccio MN, Whitley PE (2001) Relationships of cervical, thoracic, and lumbar bone mineral density by quantitative CT. J Comput Assist Tomogr 25:146–150. https://doi.org/10.1097/00004728-200101000-00027

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Ordway NR, Tan R et al (2008) Correlation of ProDisc-C failure strength with cervical bone mineral content and endplate strength. J Spinal Disord Tech 21:400–405. https://doi.org/10.1097/BSD.0b013e318157d382

    Article  PubMed  Google Scholar 

  42. Koller H, Hempfing A, Ferraris L et al (2007) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16:2055–2071. https://doi.org/10.1007/s00586-007-0398-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chang G, Boone S, Martel D et al (2017) MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 46:323–337. https://doi.org/10.1002/jmri.25647

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sollmann N, Löffler MT, Kronthaler S et al (2021) MRI-Based quantitative osteoporosis imaging at the spine and femur. J Magn Reson Imaging 54:12–35. https://doi.org/10.1002/jmri.27260

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no specific Grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Hughes.

Ethics declarations

Conflict of interest

LO, IO, CMJ, SNS, JS, EC, DAA and MM have no relevant financial or non-financial interests to disclose. JAC declares financial interests: Consulting: Covera Health; Globus Medical, Inc; Image Biopsy Lab; Pfizer, Inc; Simplify Medical; Scientific Advisory Board: Carestream, Image Analysis Group; AAS declares financial interests: Royalties: Ortho Development Corp; Private investments: Vestia Ventures MiRUS Investment LLC, ISPH II LLC, ISPH 3 LLC, VBros Venture Partners X Centinel Spine; Consulting: Clariance Inc, Kuros Bioscience AG, Medical Device Business Services Inc; Speaking and Teaching Arrangements: DePuy Synthes Products Inc; Trips/Travel: Medical Device Business Services Inc; Research Support: Spinal Kinetcs Inc; FPC declares financial interests: Royalties: NuVasive Inc; Private investments: Bonovo Orthopedics Inc, Healthpoint Capital Partners LP, ISPH II LLC, Ivy Healthcare Capital Partners LLC, Medical Device Partners II LLC, Medical Device Partners III LLC, Orthobond Corporation, Spine Biopharma LLC, Tissue Differentiation Intelligence LLC, VBVP VI LLC, Woven Orthopedics Technologies; Consulting: 4Web Medical/4Web Inc, Spine Biopharma LLC, Research Support: 4Web Medical/4Web Inc, Beatrice & Samuel A. Seaver Foundation; Non-financial interests: Scientific Advisory Board: Healthpoint Capital Partners LP, Orthobond Corporation, Spine Biopharma LLC, Woven Orthopedic Technologies; FPG declares financial interests: Royalties: NuVasive Inc, Ortho Development Corp, Zimmer Biomet Holdings INC; Stock Ownership: Bonovo Orthopedics Inc, Liventa Bioscience (AF Cell Medical), Paradigm Spine LLC, Healthpoint Capital Partners LP, Alphatec Holdings LLC, LANX Inc, Centinel Spine Inc (fka Raymedica LLC), Tissue Differentiation Intelligence LLC, Spine Kinetics Inc; Consulting: DePuy Synthes Spine, NuVasive Inc; Non-financial interests: Consulting: EIT Emerging Implant Technologies, Spineart USA Inc, Ethicon Inc; APH declares financial interests: Research Support: Kuros Biosciences AG; Fellowship Support: NuVasive Inc, Kuros Bioscience B.V.

Ethical approval

This study was approved by the hospital’s Institutional Review Board (IRB # 2019–2137), and written informed consent was waived given the de-identified nature of the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oezel, L., Okano, I., Jones, C. et al. MRI-based vertebral bone quality score compared to quantitative computed tomography bone mineral density in patients undergoing cervical spinal surgery. Eur Spine J 32, 1636–1643 (2023). https://doi.org/10.1007/s00586-023-07570-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07570-2

Keywords

Navigation