Skip to main content
Log in

Radial trend in murine annulus fibrosus fiber orientation is best explained by vertebral growth

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The intervertebral disc (IVD) annulus fibrosus (AF) is composed of concentric lamellae with alternating right- and left-handed helically oriented collagen fiber bundles. This arrangement results in anisotropic material properties, which depend on local fiber orientations. Prior measurements of fiber inclination angles in human lumbar and bovine caudal IVDs found a significantly higher inclination angle in the inner AF than outer, though it is currently unknown if this pattern is conserved in smaller mammalian species. Additionally, the physical mechanism behind this pattern remains un-determined.

Methods

In this study, AF fiber angles were measured histologically in murine caudal IVDs and compared to previously published values from bovine caudal IVDs. Fiber angles were also predicted using three theoretical models, including two based on adaptation to internal swelling pressure and one based on vertebral body growth.

Results

Fiber angle was found to significantly decrease from 49.5 ± 3.8° in the inner AF to 34.5 ± 6.6° in the outer AF. While steeper than in bovine discs at all locations, the trend with radial position was comparable between species. This trend was best fit by growth-based model and opposite of that predicted by the pressure vessel models.

Conclusion

Trends in AF fiber orientation are conserved between mammalian species. Modeling results suggest that the AF tissue microstructure is more likely to be driven by adjacent vertebral body growth than adapted for optimal mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith LJ, Elliott DM (2011) Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression. Matrix Biol 30:267–274. https://doi.org/10.1016/j.matbio.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansen HJ (1959) Comparative views of the pathology of disk degeneration in animals. Lab Invest 8:1242–1265

    CAS  PubMed  Google Scholar 

  3. Urban JPG, Roberts S, Ralphs JR (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40:53–61

    Google Scholar 

  4. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19. https://doi.org/10.1007/s00586-007-0414-y

    Article  PubMed  Google Scholar 

  5. Momeni Shahraki N, Fatemi A, Goel VK, Agarwal A (2015) On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Front Bioeng Biotechnol 3:69. https://doi.org/10.3389/fbioe.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  6. Noailly J, Planell JA, Lacroix D (2011) On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomech Model Mechanobiol 10:203–219. https://doi.org/10.1007/s10237-010-0227-5

    Article  PubMed  Google Scholar 

  7. Hudson KD, Alimi M, Grunert P, Härtl R, Bonassar LJ (2013) Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol 24:872–879. https://doi.org/10.1016/j.copbio.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  8. Nerurkar NL, Sen S, Huang AH, Elliott DM, Mauck RL (2010) Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine (Phila Pa 1976) 35:867–873. https://doi.org/10.1097/BRS.0b013e3181d74414

    Article  Google Scholar 

  9. Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23:75–88. https://doi.org/10.3109/03008208909103905

    Article  CAS  PubMed  Google Scholar 

  10. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3:125–140. https://doi.org/10.1007/s10237-004-0053-8

    Article  CAS  PubMed  Google Scholar 

  11. Michalek AJ (2019) A growth-based model for the prediction of fiber angle distribution in the intervertebral disc annulus fibrosus. Biomech Model Mechanobiol 18:1363–1369. https://doi.org/10.1007/s10237-019-01150-4

    Article  PubMed  Google Scholar 

  12. Hickey DS, Hukins DW (1982) Aging changes in the macromolecular organization of the intervertebral disc: an X-ray diffraction and electron microscopic study. Spine (Phila Pa 1976) 7:234–242. https://doi.org/10.1097/00007632-198205000-00007

    Article  CAS  Google Scholar 

  13. Ghazanfari S, Werner A, Ghazanfari S, Weaver JC, Smit TH (2018) Morphogenesis of aligned collagen fibers in the annulus fibrosus: mammals versus avians. Biochem Biophys Res Commun 503:1168–1173. https://doi.org/10.1016/j.bbrc.2018.06.136

    Article  CAS  PubMed  Google Scholar 

  14. Inoue H (1973) Three-dimensional observation of collagen framework of intervertebral discs in rats, dogs and humans. Arch Histol Jpn 36:39–56. https://doi.org/10.1679/aohc1950.36.39

    Article  CAS  PubMed  Google Scholar 

  15. Berg-Johansen B, Fields AJ, Liebenberg EC, Li A, Lotz JC (2018) Structure-function relationships at the human spinal disc-vertebra interface. J Orthop Res 36:192–201. https://doi.org/10.1002/jor.23627

    Article  PubMed  Google Scholar 

  16. Brown S, Rodrigues S, Sharp C, Wade K, Broom N, McCall IW, Roberts S (2017) Staying connected: structural integration at the intervertebral disc-vertebra interface of human lumbar spines. Eur Spine J 26:248–258. https://doi.org/10.1007/s00586-016-4560-y

    Article  PubMed  Google Scholar 

  17. François RJ, Dhem A (1974) Microradiographic study of the normal human vertebral body. Acta Anat (Basel) 89:251–265. https://doi.org/10.1159/000144288

    Article  Google Scholar 

  18. Rodrigues SA, Thambyah A, Broom ND (2017) How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study. J Anat 230:152–164. https://doi.org/10.1111/joa.12536

    Article  PubMed  Google Scholar 

  19. Shigley JE, Mischke CR, Mischke C, Shigley J (2001) Mechanical design engineering, 6/e with student resources CD-ROM, 6th (edn). McGraw-Hill College 2001

  20. Rohlmann A, Pohl D, Bender A, Graichen F, Dymke J, Schmidt H, Bergmann G (2014) Activities of everyday life with high spinal loads. PLoS ONE 9:e98510. https://doi.org/10.1371/journal.pone.0098510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Showalter BL, Beckstein JC, Martin JT, Beattie EE, Orías AAE, Schaer TP, Vresilovic EJ, Elliott DM (2012) Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content. Spine (Phila Pa 1976) 37:E900–E907. https://doi.org/10.1097/BRS.0b013e31824d911c

    Article  Google Scholar 

  22. O’Connell GD, Vresilovic EJ, Elliott DM (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine (Phila Pa 1976) 32:328–333. https://doi.org/10.1097/01.brs.0000253961.40910.c1

    Article  Google Scholar 

  23. Sharabi M, Wade KR, Galbusera F, Rasche V, Haj-Ali R, Wilke H-J (2018) Three-dimensional microstructural reconstruction of the ovine intervertebral disc using ultrahigh field MRI. Spine J 18:2119–2127. https://doi.org/10.1016/j.spinee.2018.06.356

    Article  PubMed  Google Scholar 

  24. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976) 15:402–410. https://doi.org/10.1097/00007632-199005000-00011

    Article  CAS  Google Scholar 

  25. Disney CM, Eckersley A, McConnell JC, Geng H, Bodey AJ, Hoyland JA, Lee PD, Sherratt MJ, Bay BK (2019) Synchrotron tomography of intervertebral disc deformation quantified by digital volume correlation reveals microstructural influence on strain patterns. Acta Biomater 92:290–304. https://doi.org/10.1016/j.actbio.2019.05.021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Michalek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Michalek, A.J. Radial trend in murine annulus fibrosus fiber orientation is best explained by vertebral growth. Eur Spine J 30, 3450–3456 (2021). https://doi.org/10.1007/s00586-021-06999-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06999-7

Keywords

Navigation