Skip to main content

Advertisement

Log in

Long-term outcome of targeted therapy for low back pain in elderly degenerative lumbar scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Treatment of low back pain (LBP) associated with elderly degenerative lumbar scoliosis (DLS) remains controversial. We have developed percutaneous intervertebral-vacuum polymethylmethacrylate injection (PIPI) targeting to the intervertebral vacuum as a minimally invasive surgery. The present study compared the long-term clinical outcomes of PIPI to that of nonoperative treatment.

Methods

Patients with de novo DLS, aged ≥ 65 years, who had LBP with visual analog scale (VAS) of ≥ 50 for ≥ 6 months with intervertebral vacuum on computed tomography and bone marrow edema (BME) on magnetic resonance imaging were included. The clinical outcomes were evaluated using VAS and the Oswestry Disability Index (ODI) at baseline, 1, 6, 12, 24 months, and at the final follow-up. The course of BME was also evaluated.

Results

One hundred and one patients underwent PIPI and 61 received nonoperative treatment. The mean follow-up duration after PIPI and nonoperative treatment was 63.7 ± 32.4 and 43.9 ± 20.9 months, respectively. VAS and ODI after PIPI were significantly improved compared to post-nonoperative treatment. BME decreased substantially in the PIPI group and it was significantly correlated with VAS and ODI improvement. Following PIPI, LBP recurred in 28 patients (35%). LBP recurrence was identified at the same level of PIPI in 10 patients, at the adjacent level of PIPI in 11 patients, and at the non-adjacent level of PIPI in seven patients. Eighteen patients underwent additional PIPIs, and both VAS and ODI were significantly improved after additional PIPIs.

Conclusion

Bone marrow lesions of the endplate are strongly associated with the presence of LBP. PIPI can be considered as an effective, safe and repeatable treatment for LBP in elderly DLS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glassman SD, Carreon LY, Shaffrey CI, Polly DW, Ondra SL, Berven SH, Bridwell KH (2010) The costs and benefits of nonoperative management for adult scoliosis. Spine (Phila Pa 1976) 35:578–582. https://doi.org/10.1097/BRS.0b013e3181b0f2f8

    Article  Google Scholar 

  2. Everett CR, Patel RK (2007) A systematic literature review of nonsurgical treatment in adult scoliosis. Spine (Phila Pa 1976) 32:S130-134. https://doi.org/10.1097/BRS.0b013e318134ea88

    Article  Google Scholar 

  3. Li G, Passias P, Kozanek M, Fu E, Wang S, Xia Q, Li G, Rand FE, Wood KB (2009) Adult scoliosis in patients over sixty-five years of age: outcomes of operative versus nonoperative treatment at a minimum two-year follow-up. Spine (Phila Pa 1976) 34:2165–2170. https://doi.org/10.1097/BRS.0b013e3181b3ff0c

    Article  Google Scholar 

  4. Smith JS, Shaffrey CI, Berven S, Glassman S, Hamill C, Horton W, Ondra S, Schwab F, Shainline M, Fu KM, Bridwell K, Spinal Deformity Study G (2009) Improvement of back pain with operative and nonoperative treatment in adults with scoliosis. Neurosurgery 65:86–93; discussion 93–84. https://doi.org/10.1227/01.NEU.0000347005.35282.6C

  5. Bridwell KH, Glassman S, Horton W, Shaffrey C, Schwab F, Zebala LP, Lenke LG, Hilton JF, Shainline M, Baldus C, Wootten D (2009) Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine (Phila Pa 1976) 34:2171–2178. https://doi.org/10.1097/BRS.0b013e3181a8fdc8

    Article  Google Scholar 

  6. Eck KR, Bridwell KH, Ungacta FF, Riew KD, Lapp MA, Lenke LG, Baldus C, Blanke K (2001) Complications and results of long adult deformity fusions down to l4, l5, and the sacrum. Spine (Phila Pa 1976) 26:E182-192. https://doi.org/10.1097/00007632-200105010-00012

    Article  CAS  Google Scholar 

  7. Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG (2007) The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine (Phila Pa 1976) 32:2764–2770. https://doi.org/10.1097/BRS.0b013e31815a7644

    Article  Google Scholar 

  8. Kim YJ, Bridwell KH, Lenke LG, Rinella AS, Edwards C (1976) 2nd (2005) Pseudarthrosis in primary fusions for adult idiopathic scoliosis: incidence, risk factors, and outcome analysis. Spine (Phila Pa 1976) 30:468–474. https://doi.org/10.1097/01.brs.0000153392.74639.ea

    Article  Google Scholar 

  9. Shapiro GS, Taira G, Boachie-Adjei O (2003) Results of surgical treatment of adult idiopathic scoliosis with low back pain and spinal stenosis: a study of long-term clinical radiographic outcomes. Spine (Phila Pa 1976) 28:358–363. https://doi.org/10.1097/01.BRS.0000048502.62793.0C

    Article  Google Scholar 

  10. Takahashi S, Delecrin J, Passuti N (2002) Surgical treatment of idiopathic scoliosis in adults: an age-related analysis of outcome. Spine (Phila Pa 1976) 27:1742–1748. https://doi.org/10.1097/00007632-200208150-00011

    Article  Google Scholar 

  11. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303:1259–1265. https://doi.org/10.1001/jama.2010.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simmons ED, Jr., Simmons EH (1992) Spinal stenosis with scoliosis. Spine (Phila Pa 1976) 17:S117–120. doi: https://doi.org/10.1097/00007632-199206001-00009

  13. Kelly MP, Lurie JD, Yanik EL, Shaffrey CI, Baldus CR, Boachie-Adjei O, Buchowski JM, Carreon LY, Crawford CH 3rd, Edwards C 2nd, Errico TJ, Glassman SD, Gupta MC, Lenke LG, Lewis SJ, Kim HJ, Koski T, Parent S, Schwab FJ, Smith JS, Zebala LP, Bridwell KH (2019) Operative versus nonoperative treatment for adult symptomatic lumbar scoliosis. J Bone Joint Surg Am 101:338–352. https://doi.org/10.2106/JBJS.18.00483

    Article  PubMed  Google Scholar 

  14. Nakamae T, Yamada K, Shimbo T, Kanazawa T, Okuda T, Takata H, Hashimoto T, Hiramatsu T, Tanaka N, Ochi M, Olmarker K, Fujimoto Y (2016) Bone marrow edema and low back pain in elderly degenerative lumbar scoliosis: a cross-sectional study. Spine (Phila Pa 1976) 41:885–892. https://doi.org/10.1097/BRS.0000000000001315

    Article  Google Scholar 

  15. Yamada K, Nakamae T, Shimbo T, Kanazawa T, Okuda T, Takata H, Hashimoto T, Hiramatsu T, Tanaka N, Olmarker K, Fujimoto Y (2016) Targeted therapy for low back pain in elderly degenerative lumbar scoliosis: a cohort study. Spine (Phila Pa 1976) 41:872–879. https://doi.org/10.1097/BRS.0000000000001524

    Article  Google Scholar 

  16. Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948. https://doi.org/10.1007/s00586-005-1053-9

    Article  PubMed  Google Scholar 

  17. Anderson JA (1977) Problems of classification of low-back pain. Rheumatol Rehabil 16:34–36. https://doi.org/10.1093/rheumatology/16.1.34

    Article  CAS  PubMed  Google Scholar 

  18. Farasyn AD, Meeusen R, Nijs J (2008) Validity of cross-friction algometry procedure in referred muscle pain syndromes: preliminary results of a new referred pain provocation technique with the aid of a Fischer pressure algometer in patients with nonspecific low back pain. Clin J Pain 24:456–462. https://doi.org/10.1097/AJP.0b013e3181643403

    Article  PubMed  Google Scholar 

  19. Furness G, Reilly MP, Kuchi S (2002) An evaluation of ultrasound imaging for identification of lumbar intervertebral level. Anaesthesia 57:277–280. https://doi.org/10.1046/j.1365-2044.2002.2403_4.x

    Article  CAS  PubMed  Google Scholar 

  20. Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66:271–273

    CAS  PubMed  Google Scholar 

  21. Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine (Phila Pa 1976) 25:2940–2952; discussion 2952. doi: https://doi.org/10.1097/00007632-200011150-00017

  22. Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd edn. L. Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  23. Chou R, Loeser JD, Owens DK, Rosenquist RW, Atlas SJ, Baisden J, Carragee EJ, Grabois M, Murphy DR, Resnick DK, Stanos SP, Shaffer WO, Wall EM (2009) Interventional therapies, surgery, and interdisciplinary rehabilitation for low back pain: an evidence-based clinical practice guideline from the American Pain Society. Spine (Phila Pa 1976) 34:1066–1077. https://doi.org/10.1097/BRS.0b013e3181a1390d

    Article  Google Scholar 

  24. Chou R, Atlas SJ, Stanos SP, Rosenquist RW (2009) Nonsurgical interventional therapies for low back pain: a review of the evidence for an American Pain Society clinical practice guideline. Spine (Phila Pa 1976) 34:1078–1093. https://doi.org/10.1097/BRS.0b013e3181a103b1

    Article  Google Scholar 

  25. Copay AG, Glassman SD, Subach BR, Berven S, Schuler TC, Carreon LY (2008) Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the oswestry disability index, medical outcomes study questionnaire short form 36, and pain scales. Spine J 8:968–974. https://doi.org/10.1016/j.spinee.2007.11.006

    Article  PubMed  Google Scholar 

  26. Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von Korff M, Bouter LM, de Vet HC (2008) Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine (Phila Pa 1976) 33:90–94. https://doi.org/10.1097/BRS.0b013e31815e3a10

    Article  Google Scholar 

  27. Cheng T, Gerdhem P (2018) Outcome of surgery for degenerative lumbar scoliosis: an observational study using the Swedish Spine register. Eur Spine J 27:622–629. https://doi.org/10.1007/s00586-017-5248-7

    Article  PubMed  Google Scholar 

  28. Deyo RA (2015) Fusion surgery for lumbar degenerative disc disease: still more questions than answers. Spine J 15:272–274. https://doi.org/10.1016/j.spinee.2014.11.004

    Article  PubMed  Google Scholar 

  29. Cheh G, Bridwell KH, Lenke LG, Buchowski JM, Daubs MD, Kim Y, Baldus C (2007) Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976) 32:2253–2257. https://doi.org/10.1097/BRS.0b013e31814b2d8e

    Article  Google Scholar 

  30. Kaito T, Hosono N, Mukai Y, Makino T, Fuji T, Yonenobu K (2010) Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine 12:671–679. https://doi.org/10.3171/2009.12.SPINE08823

    Article  PubMed  Google Scholar 

  31. Cvitanic OA, Schimandle J, Casper GD, Tirman PF (2000) Subchondral marrow changes after laser diskectomy in the lumbar spine: MR imaging findings and clinical correlation. AJR Am J Roentgenol 174:1363–1369. https://doi.org/10.2214/ajr.174.5.1741363

    Article  CAS  PubMed  Google Scholar 

  32. Braithwaite I, White J, Saifuddin A, Renton P, Taylor BA (1998) Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J 7:363–368. https://doi.org/10.1007/s005860050091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey JF, Liebenberg E, Degmetich S, Lotz JC (2011) Innervation patterns of PGP 9.5-positive nerve fibers within the human lumbar vertebra. J Anat 218:263–270. https://doi.org/10.1111/j.1469-7580.2010.01332.x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79:147–153. https://doi.org/10.1302/0301-620x.79b1.6814

    Article  CAS  PubMed  Google Scholar 

  35. Freemont AJ, Watkins A, Le Maitre C, Baird P, Jeziorska M, Knight MT, Ross ER, O’Brien JP, Hoyland JA (2002) Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol 197:286–292. https://doi.org/10.1002/path.1108

    Article  CAS  PubMed  Google Scholar 

  36. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 25:1625–1636. https://doi.org/10.1097/00007632-200007010-00005

    Article  CAS  Google Scholar 

  37. Gallagher S, Marras WS, Litsky AS, Burr D (2006) An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech (Bristol, Avon) 21:228–234. https://doi.org/10.1016/j.clinbiomech.2005.10.001

    Article  Google Scholar 

  38. Salo J, Mackiewicz Z, Indahl A, Konttinen YT, Holm AK, Sukura A, Holm S (2008) Plasmin-matrix metalloproteinase cascades in spinal response to an experimental disc lesion in pig. Spine (Phila Pa 1976) 33:839–844. https://doi.org/10.1097/BRS.0b013e31816b1f1d

    Article  Google Scholar 

  39. Wang Y, Battie MC, Videman T (2012) A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J 21:2316–2323. https://doi.org/10.1007/s00586-012-2415-8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Videman T, Battie MC (2012) ISSLS prize winner: Lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37:1490–1496. https://doi.org/10.1097/BRS.0b013e3182608ac4

    Article  Google Scholar 

  41. Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37:1432–1439. https://doi.org/10.1097/BRS.0b013e31824dd20a

    Article  Google Scholar 

  42. Niv D, Gofeld M, Devor M (2003) Causes of pain in degenerative bone and joint disease: a lesson from vertebroplasty. Pain 105:387–392. https://doi.org/10.1016/s0304-3959(03)00277-x

    Article  PubMed  Google Scholar 

  43. Khalil JG, Smuck M, Koreckij T, Keel J, Beall D, Goodman B, Kalapos P, Nguyen D, Garfin S, Investigators IT (2019) A prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain. Spine J 19:1620–1632. https://doi.org/10.1016/j.spinee.2019.05.598

    Article  PubMed  Google Scholar 

  44. Varga PP, Jakab G, Bors IB, Lazary A, Szoverfi Z (2015) Experiences with PMMA cement as a stand-alone intervertebral spacer: percutaneous cement discoplaty in the case of vacuum phenomenon within lumbar intervertebral siscs. Orthopade 44:1–7. https://doi.org/10.1007/s00132-014-3060-1

    Article  Google Scholar 

  45. Sola C, Camino Willhuber G, Kido G, Pereira Duarte M, Bendersky M, Mereles M, Petracchi M, Gruenberg M (2018) Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients. Eur Spine J. https://doi.org/10.1007/s00586-018-5547-7

    Article  PubMed  Google Scholar 

  46. Kiss L, Varga PP, Szoverfi Z, Jakab G, Eltes PE, Lazary A (2019) Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty. Eur Spine J 28:1441–1447. https://doi.org/10.1007/s00586-019-05966-7

    Article  PubMed  Google Scholar 

  47. Camino Willhuber G, Kido G, Pereira Duarte M, Estefan M, Bendersky M, Bassani J, Petracchi M, Gruenberg M, Sola C (2020) Percutaneous cement discoplasty for the treatment of advanced degenerative disc conditions: a case series analysis. Global Spine J 10:729–734. https://doi.org/10.1177/2192568219873885

    Article  PubMed  Google Scholar 

  48. Francis RS (1988) Scoliosis screening of 3,000 college-aged women. The utah study–phase 2. Phys Ther 68:1513–1516

    CAS  PubMed  Google Scholar 

  49. Grevitt M, Khazim R, Webb J, Mulholland R, Shepperd J (1997) The short form-36 health survey questionnaire in spine surgery. J Bone Joint Surg Br 79:48–52. https://doi.org/10.1302/0301-620x.79b1.1269

    Article  CAS  PubMed  Google Scholar 

  50. Schwab F, Dubey A, Gamez L, El Fegoun AB, Hwang K, Pagala M, Farcy JP (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085. https://doi.org/10.1097/01.brs.0000160842.43482.cd

    Article  Google Scholar 

  51. Kobayashi T, Atsuta Y, Takemitsu M, Matsuno T, Takeda N (2006) A prospective study of de novo scoliosis in a community based cohort. Spine (Phila Pa 1976) 31:178–182. https://doi.org/10.1097/01.brs.0000194777.87055.1b

    Article  Google Scholar 

  52. McCulloch P, Taylor I, Sasako M, Lovett B, Griffin D (2002) Randomised trials in surgery: problems and possible solutions. BMJ 324:1448–1451. https://doi.org/10.1136/bmj.324.7351.1448

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. John G Heller for editing our manuscript, Dr. Reisuke Nishihara for examining the image findings.

Funding

We have no funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

Yoshinori Fujimoto and Kiyotaka Yamada wrote and prepared the manuscript, and all of the authors participated in the study design. All authors have read, reviewed, and approved the article.

Corresponding author

Correspondence to Yoshinori Fujimoto.

Ethics declarations

Conflicts of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, K., Nakamae, T., Nakanishi, K. et al. Long-term outcome of targeted therapy for low back pain in elderly degenerative lumbar scoliosis. Eur Spine J 30, 2020–2032 (2021). https://doi.org/10.1007/s00586-021-06805-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06805-4

Keywords

Navigation