Skip to main content

Advertisement

Log in

Hyperexcitability and sensitization of sodium channels of dorsal root ganglion neurons in a rat model of lumber disc herniation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Low back pain and sciatica are the most common symptoms of patients with lumbar disc herniation (LDH). The pathophysiology of lumbocrural pain and sciatica is not fully understood. The aim of the present study was to define the membrane properties and activities of voltage-gated sodium channels of dorsal root ganglion (DRG) neurons in a rat model of LDH.

Methods

LDH was established by transplantation of autologous nucleus pulposus (NP) to lumbar 5 and 6 spinal nerves (L5–L6 DRG) of adult male rats. Mechanical paw withdrawal threshold (PWT) and thermal paw withdrawal latency (PWL) were measured 1 day before and through 35 days after transplantation of NP. Changes in expression of VGSCs were determined by western blotting. L5–L6 DRGs neurons innervating the hindpaw were labeled with DiI and acutely dissociated for measuring excitability and sodium channel currents under whole-cell patch clamp configurations.

Results

NP transplantation significantly reduced the PWT and PWL in association with a significant reduction in rheobase and an increase in numbers of action potentials evoked by 2X and 3X rheobase current stimulation. Voltage-gated sodium current density was significantly enhanced in L5–L6 DRG neurons from LDH rats. The inactivation curve showed a leftward shift in LDH rats while activation curve did not significantly alter. However, NP transplantation remarkably enhanced expression of NaV1.7 and NaV1.8 in L5–L6 DRGs but not in T10–12 DRGs.

Conclusion

These data suggest that NP application produces pain-related behavior and potentiates sodium current density of DRG neurons, which is most likely mediated by enhanced expression of NaV1.7 and NaV1.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toyone T, Takahashi K, Kitahara H, Yamagata M, Murakami M, Moriya H (1993) Visualisation of symptomatic nerve roots. Prospective study of contrast-enhanced MRI in patients with lumbar disc herniation. J Bone Joint Surg Br 75:529–533

    PubMed  CAS  Google Scholar 

  2. Kawakami M, Tamaki T, Weinstein JN, Hashizume H, Nishi H, Meller ST (1996) Pathomechanism of pain-related behavior produced by allografts of intervertebral disc in the rat. Spine (Phila Pa 1976) 21:2101–2107

    Article  CAS  Google Scholar 

  3. Konttinen YT, Gronblad M, Korkala O, Tolvanen E, Polak JM (1990) Immunohistochemical demonstration of subclasses of inflammatory cells and active, collagen-producing fibroblasts in the synovial plicae of lumbar facet joints. Spine (Phila Pa 1976) 15:387–390

    Article  CAS  Google Scholar 

  4. Kawaguchi S, Yamashita T, Yokogushi K, Murakami T, Ohwada O, Sato N (2001) Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs. Spine (Phila Pa 1976) 26:1209–1214

    Article  CAS  Google Scholar 

  5. Geiss A, Larsson K, Rydevik B, Takahashi I, Olmarker K (2007) Autoimmune properties of nucleus pulposus: an experimental study in pigs. Spine (Phila Pa 1976) 32:168–173. doi:10.1097/01.brs.0000251651.61844.2d

    Article  Google Scholar 

  6. Vucetic N, Maattanen H, Svensson O (1995) Pain and pathology in lumbar disc hernia. Clin Orthop Relat Res 320:65–72

    PubMed  Google Scholar 

  7. Omarker K, Myers RR (1998) Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain 78:99–105 (S0304-3959(98)00119-5)

    Article  PubMed  CAS  Google Scholar 

  8. de Souza Grava AL, Ferrari LF, Defino HL (2012) Cytokine inhibition and time-related influence of inflammatory stimuli on the hyperalgesia induced by the nucleus pulposus. Eur Spine J 21:537–545. doi:10.1007/s00586-011-2027-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pedersen LM, Schistad E, Jacobsen LM, Roe C, Gjerstad J (2015) Serum levels of the pro-inflammatory interleukins 6 (IL-6) and -8 (IL-8) in patients with lumbar radicular pain due to disc herniation: a 12-month prospective study. Brain Behav Immun. doi:10.1016/j.bbi.2015.01.008

    PubMed  Google Scholar 

  10. Wang W, Gu J, Li YQ, Tao YX (2011) Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 7:16. doi:10.1186/1744-8069-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Estacion M, Harty TP, Choi JS, Tyrrell L, Dib-Hajj SD, Waxman SG (2009) A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol 66:862–866. doi:10.1002/ana.21895

    Article  PubMed  CAS  Google Scholar 

  12. He QL, Chen Y, Qin J, Mo SL, Wei M, Zhang JJ, Li MN, Zou XN, Zhou SF, Chen XW, Sun LB (2012) Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion. Med Sci Monit 18:BR229–BR236 882899

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Wang Q, Zhu H, Zou K, Zhou Y-L, Jiang X, Yan J, Xu G-Y (2015) Sensitization of P2X3 receptors by cystathionine β-synthetase mediates persistent pain hypersensitivity in a rat model of lumbar disc herniation. Mol Pain 11:15. doi:10.1186/s12990-015-0012-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raouf R, Quick K, Wood JN (2010) Pain as a channelopathy. J Clin Invest 120:3745–3752. doi:10.1172/JCI43158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hu S, Xu W, Miao X, Gao Y, Zhu L, Zhou Y, Xiao Y, Xu GY (2013) Sensitization of sodium channels by cystathionine beta-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation. Exp Neurol 248:275–285. doi:10.1016/j.expneurol.2013.06.027

    Article  PubMed  CAS  Google Scholar 

  16. Sadamasu A, Sakuma Y, Suzuki M, Orita S, Yamauchi K, Inoue G, Aoki Y, Ishikawa T, Miyagi M, Kamoda H, Kubota G, Oikawa Y, Inage K, Sainoh T, Sato J, Nakamura J, Toyone T, Takahashi K, Ohtori S (2014) Upregulation of NaV1.7 in dorsal root ganglia after intervertebral disc injury in rats. Spine (Phila Pa 1976) 39:E421–E426. doi:10.1097/BRS.0000000000000229

    Article  Google Scholar 

  17. Mukai M, Sakuma Y, Suzuki M, Orita S, Yamauchi K, Inoue G, Aoki Y, Ishikawa T, Miyagi M, Kamoda H, Kubota G, Oikawa Y, Inage K, Sainoh T, Sato J, Nakamura J, Takaso M, Toyone T, Takahashi K, Ohtori S (2014) Evaluation of behavior and expression of NaV1.7 in dorsal root ganglia after sciatic nerve compression and application of nucleus pulposus in rats. Eur Spine J 23:463–468. doi:10.1007/s00586-013-3076-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hou SX, Tang JG, Chen HS, Chen J (2003) Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats. Pain 105:255–264 (S0304395903002227)

    Article  PubMed  Google Scholar 

  19. Qi F, Zhou Y, Xiao Y, Tao J, Gu J, Jiang X, Xu GY (2013) Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats. Pain 154:34–45. doi:10.1016/j.pain.2012.07.031

    Article  PubMed  CAS  Google Scholar 

  20. Ayton S, George JL, Adlard PA, Bush AI, Cherny RA, Finkelstein DI (2013) The effect of dopamine on MPTP-induced rotarod disability. Neurosci Lett 543:105–109. doi:10.1016/j.neulet.2013.02.066

    Article  PubMed  CAS  Google Scholar 

  21. Xu GY, Huang LY (2004) Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors. Proc Natl Acad Sci USA 101:11868–11873. doi:10.1073/pnas.0401490101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mulleman D, Mammou S, Griffoul I, Watier H, Goupille P (2006) Pathophysiology of disk-related low back pain and sciatica II. Evidence supporting treatment with TNF-alpha antagonists. Joint Bone Spine 73:270–277. doi:10.1016/j.jbspin.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  23. Nilsson E, Larsson K, Rydevik B, Brisby H, Hammar I (2013) Evoked thalamic neuronal activity following DRG application of two nucleus pulposus derived cell populations: an experimental study in rats. Eur Spine J 22:1113–1118. doi:10.1007/s00586-013-2669-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Waxman SG, Zamponi GW (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17:153–163. doi:10.1038/nn.3602

    Article  PubMed  CAS  Google Scholar 

  25. Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297 (S0959438803000746)

    Article  PubMed  CAS  Google Scholar 

  26. Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JG, Bekelaar K, Merkies IS, Faber CG, Dib-Hajj SD, Waxman SG (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 33:14087–14097. doi:10.1523/JNEUROSCI.2710-13.2013

    Article  PubMed  CAS  Google Scholar 

  27. Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110. doi:10.1007/978-3-642-41588-3_5

    Article  PubMed  CAS  Google Scholar 

  28. Yeomans DC, Levinson SR, Peters MC, Koszowski AG, Tzabazis AZ, Gilly WF, Wilson SP (2005) Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum Gene Ther 16:271–277. doi:10.1089/hum.2005.16.271

    Article  PubMed  CAS  Google Scholar 

  29. Strickland IT, Martindale JC, Woodhams PL, Reeve AJ, Chessell IP, McQueen DS (2008) Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain. Eur J Pain 12:564–572. doi:10.1016/j.ejpain.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  30. Liu XD, Yang JJ, Fang D, Cai J, Wan Y, Xing GG (2014) Functional upregulation of nav1.8 sodium channels on the membrane of dorsal root Ganglia neurons contributes to the development of cancer-induced bone pain. PLoS One 9:e114623. doi:10.1371/journal.pone.0114623

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shields SD, Cheng X, Uceyler N, Sommer C, Dib-Hajj SD, Waxman SG (2012) Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury. J Neurosci 32:10819–10832. doi:10.1523/JNEUROSCI.0304-12.2012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81070884, 81230024 and 81471137) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This project is subject to the second affiliated hospital of Soochow university preponderant clinic discipline group project funding (XKQ2015010). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

J. Yan, K. Zou and X. Liu contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zou, K., Liu, X. et al. Hyperexcitability and sensitization of sodium channels of dorsal root ganglion neurons in a rat model of lumber disc herniation. Eur Spine J 25, 177–185 (2016). https://doi.org/10.1007/s00586-015-4171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4171-z

Keywords

Navigation